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1. Introduction

Visual processing has predominantly been aimed at labeled, static images (e.g., caltech101),
ignoring a) moving images, which constitute a vast amount of visual data (e.g., youtube,
television, as well as all natural visual real--world experience); and b) unlabeled images;
despite the fact that labeling is among the most time-intensive aspects of vision research. We
studied 1) the development of tasks for visual processing of moving scenes, to provide the
llield with datasets and benchmarks, to begin to try to catch up to the very large number of
static visual datasets; and 2) development and testing of algorithms for vision for time--
varying images (VTV), including evaluation of existing algorithms and development of novel
approaches. This grant was intended to be a relatively brief (18 month) initial proof of
principle effort. It has arguably exceeded its initial aims: we have developed novel
algorithms for object recognition and localization in both still images and in videos, and we
have carried out initial evaluations comparing the new methods with previous approaches.
The results, described herein, are promising, and ongoing work is aimed at extending the
initial findings to include a suite of advanced approaches to VTV tasks.

2. Novel supervised learning system

The results of this work have been based on algorithms developed from brain circuit
analysis, described in part in a series of publications (Rodriguez et al., 2004; Granger 2005;
2006; Felch & Granger 2008; 2011; Granger 2012). In short, multiple regions of the brain
perform individual algorithms in isolation, and their combined operation yields a system that
takes inputs, constructs memory hierarchies incrementally via learning, and produces
suggested output responses. The internal representations are in the form of nested
sequences of categories, corresponding to invariant spatiotemporal patterns; these have
been analyzed in terms of families of grammars that encode relations organized
hierarchically (Granger 2006; 2012).

The corito-striatal loop (CSL) system is one instance of a method that emerges from the
interaction of two distinct simpler algorithms (both derived from brain circuit operation):
one that performs the operation of unsupervised clustering, and the other performs match--
mismatch signaling. The combined system operates in unsupervised mode, except when
presented with information that can be used for reinforcement. For instance, complex
patterns (e.g., objects with various shapes) may be initially learned via unsupervised
relations among their component parts. Whenever these unsupervised representations are
found to be at odds with (sparse) supervised information (e.g., when an input is categorized
incorrectly), the condition triggers a further unsupervised split of the node in the tree. This
successive subdivision repeats until a correct supervised classification is arrived at
(Chandrashekar & Granger 2012). The result integrates unsupervised rich representations
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via extremely inexpensive methods, with sparse reinforcement signals used when they are
available.

The CSL algorithm is a generative method, i.e., it is in the category of algorithms that model
data occurring within each presented class, rather than “discriminative” methods, which
seek solely to identify differences between classes. Generative models are often taken as
performing extra work compared to discriminative models, especially in cases where the
only task is to distinguish among labeled classes (Ng & Jordan 2002). The CSL method thus
carries out more work than typical classification methods such as support vector machines
(SVMs). Yet experiments have been run to compare the algorithms against each other on
classification tasks, with surprising results. The classification task is, for the CSL algorithm,
a restricted task, since the algorithm is capable of many additional operations (including
unsupervised learning, localization, and others); yet this restricted task is among the most
widely--used applications in image processing. In this task, the CSL algorithm achieves
classification results comparable to those of SVMs, yet uses far less computational cost to do
so, despite carrying out the additional work entailed in generative learning (Chandrashekar
& Granger 2012).

The CSL mechanism identifies supervised class boundaries as a side-effect of its primary
operation, which is that of uncovering structure in the input space independent of
supervised labels. It performs solely unsupervised splits of the data into similarity--based
clusters. The algorithm, described in detail in Chandrashekar & Granger (2012), is as shown
below.

The method constructs a class tree that records unsupervised structure within the data as
well as providing a means to perform class prediction on novel samples, as per supervised
learning tasks. The PARTITION function denotes an unsupervised clustering algorithm
which can in principle be any of a family of clustering routines. The function SUBDIVIDE
determines whether or not the data at a given tree node gy, all belong to a single labeled

class; if not, the function iterates to further subdivide the node.

This deceptively simple mechanism not only produces a supervised classifier, but also
uncovers the similarity structure embedded in the dataset, which competing supervised
methods such as SVMs do not do. Despite the fact that competing algorithms, including SVM
and Knn methods, were designed expressly to obtain maximum accuracy at supervised
classification, we have presented findings indicating that even on this task, the CSL
algorithm achieves comparable accuracy while requiring significantly less computational
resource cost. This work is described in detail in (Chandrashekar & Granger 2012).

2
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Input: Dataset: X = {z; € RM} with labels
Y ={y; € {1,2,3..K}}
Output: Class Tree: A tree rooted at the node
TRoot
Init: TRoot.X = X, TRoot.Y = Y; TRoot.Labels =
LABELSET(Y)
Q = [I; Add(Q, TRoot);
while Q is not empty do
gn = First node in Q
if SUBDIVIDE(X ., Y4n) = true then
[Centroids, Clusters] = PARTITION (Xg4n,K*)
foreach Cluster C}, do
Node T
T.X = Clusters[k]
T.Labels = LABELSET(Y(T.X))
gn.Branches[k] = Centroids[k]
gn.Children[k] = T
Add(Q, T)
end
end
end

1: CSL Learning Algorithm

3. Joint localization and clustering

Another derived method, JLC, is a generative model that simultaneously identillies the objects
in a set of image data and identillies the locus of those objects within the images. The
algorithm searches a (preferably very large) dataset and clusters together images containing
similar neighboring feature groups, this identifying the occurrence of similar-appearing
regions across the images. The method learns the feature histograms (using just a simple
bag of features representation) in tandem with the region of the image that contains that
feature set; the corresponding region is designated the “foreground” for that object for that
image. (Foregrounds can be represented in either of two ways: as bounding boxes or as
“superpixels”; the latter are comprised of bottom---up unsupervised segments within the
scene.)

The method completely eliminates the need for labeling of images. This is arguably one of
the most time consuming and expensive components of image processing. The intuition
behind the approach is that objects can be viewed as recurring foreground patterns
appearing as coherent image regions. This approach has been used in several other studies
such as semantic latent topic models for image clustering (Russel et al., 2006; Fritz & Schiele
2008).

The method is a generative model of “foreground” formation that enables simultaneous
image clustering and efficient foreground localization via maximum likelihood estimation.
We formulate object discovery as the task of partitioning an unlabeled collection of images
into K subsets (clusters) such that all images within each subset share a similar foreground.
In order to obtain a method scalable to large collections and many classes, we adopt a

3
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foreground mask--based representation of objects, which enables fast localization given the
object model. We do not commit to any particular bottom up segmentation model. Instead
we treat the foreground mask as a parameter to be estimated as part of the likelihood
optimization. We demonstrate that this leads to localization and image clustering that
outperforms competing approaches (Chandrashekar et al., 2012). We view each object
instance as a random variable drawn from an unknown distribution common to all
instances of that object class. This common distribution assumption constrains all
subwindow histograms of an object class to represent subtle variations around a
prototypical average histogram. Based on this assumption, our approach poses object
discovery as a maximum likelihood estimation problem to be optimized over the collection
of unlabeled images. We have presented a method that maximizes this objective by
simultaneously solving for the histogram model parameters of the object classes, detecting
the object instances of each class in the unlabeled images, and performing a soft semantic
clustering of images in the dataset.

4. Object discovery in videos

The work on joint localization and clustering operates on static images, yet most visual input
is time-varying input, whether from movies, TV, videos, surveillance, or simply everyday
visual experience. Video data actually adds useful constraints to the object recognition task,
via inherent temporal consistency across neighboring frames, measurable via a range of
optic llow methods.

The video work extends our generative model of static object formation. The method
clusters together videos that contain similar objects; here we combine an appearance
model as well as a local optic-flowbased Markov model into a single objective function
defined over the video collection. Since the Markov model is local to a given video, the same
object class can be in different movement patterns and yet still contribute to the
development of the object class model.

Learning objects from videos has traditionally been attempted in the form of fully--
supervised methods, relying on structure from motion or propagating belief by tracking
during testing. Indeed, if the task is fully supervised and all video frames are fully
annotated, no special methods are required, as each frame is itself a still image. As
mentioned, however, generating labels is time consuming and requires expert human
intervention; the problem only increases when faced with the multiple frames per second
that occur in videos.

4
Approved for public release; distribution unlimited.



5. Related work

Supervised methods that learn to recognize and segment objects in videos include methods
that rely on structure from motion (Brostow et al., 2008; Ladick et al., 2010). These methods
make assumptions about characteristics of the environment, and even camera angle, that do
not readily generalize to real world datasets with unknown camera motion, lighting changes,
poor or variable resolution; and moreover, they suffer from the laborious necessity of
requiring human hand-labeling. Typical supervised methods for video segmentation are
interactive (Bai et al., 2009; Price et al,, 2009), requiring input - again time consuming and
potentially requiring some expertise --from users.

Unsupervised video segmentation methods include motion segmentation (e.g., Malik & Shi
1998), which cluster pixels in video using bottom---up motion cues; these purely bottom---up
methods are highly susceptible to variable camera motion and lighting changes, and are
unreliable in certain object motion settings (e.g., when the object starts and stops). Other
methods require tracking regions or “keypoints” across frames (Brendel & Todorovic 2009;
Brox & Malik 2010; Vasquez-Reina et al., 2010), or formulate clustering objectives to group
pixels from all frames using appearance and motion cues (Huang et al., 2009; Grundman et
al,, 2010). (A model that overcomes some of these drawbacks (Lee, Kim, Grauman, 2011),
is set up as a pipeline of arbitrary stages of processing, and its properties have been difficult
to characterize.) None of these methods learn any foreground appearance model - i.e., a
way of generatively characterizing the learned visual objects.

Many approaches have used spatiotemporal feature matching to process video datasets,
particularly for gesture recognition (e.g., Dollar et al., 2005; Laptev 2005; Niebles et al.,
2008; Willems et al.,2008). It is important to recognize that these methods typically do not
generalize to object recognition, in the not-unusual case where there are irregular motions
in a video (e.g., an object moving at uneven speed, or stopping and starting). Furthermore,
learned spatiotemporal models typically cannot be used to recognize still images, since
movement is integrally represented in the learned model.

In contrast, we have taken an approach of simultaneous clustering and localization of
objects in unlabeled videos via optimization of a single objective. The method uses both an
appearance model and motion model as constraints in the search for object foregrounds in
the videos. The learned appearance model operates on still images as well as on the videos
from which it was acquired.

6. Generative model for unsupervised object discovery in videos

The figure below illustrates the generative video processing model. We are given a set of N
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unlabeled videos z1,...,ZN with each video assumed to contain one of K objects in all of its

frames. Let the foreground object content in frame j of video i be described by zf The

twofold objective is to separate the videos into K disjoint subsets (clusters) corresponding to
the K object classes, and to localize the object within every frame of each video.

Foreground Observed video frame Foreground mask
parameters . .
'l h .
K | ;
| s
I: |"- ‘*'-1 -.\'.
o >
(&) T
k| v
S TN
L { 2}
\ i
S
LR} xf.
R
L\n k) N
[
I -
I S
Mixing cofficients Cluster label Background parameters

2: Video Processing Model

Let x;' denote the (unknown) foreground mask enclosing the object of z;" and the
foreground mask for the entire video i is then Xj , a sequence of random variables 7, The
L

foreground region corresponding to the mask for the frame is computed as the un-
normalized histogram

i B
h(z;,x;) EN
of the visual words (quantized local visual features) that occur inside 7/ (B represents the
L

number of unique words in the visual codebook which, as usual, is learned from training
images during an offline prior stage; more about this will be discussed later in
“developmental learning”). The foreground content for the overall video is computed as the
average of the content of the foreground regions in all its frames, i.e

J ]
» jh(z!,x})

H(Zifxi) - |Z|
L

where| z} is the number of frames in z; .

For an object class k in a selected foreground of a frame, assume a multinomial gaussian
distribution defined by parameters 3: = {Up, 21 } corresponding to this object class (k) in

this foreground. For members of that ki object class, the distributions H(zj, Xj ) and
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h(zf, x{)' i.e, the overall (average) foreground for the video, and the foregrounds in each of
the constituent frames, are generated from a common model with parameters H: . Letlabel

I €{1,..., K} denote the unknown cluster label of video zj , which we assume to be drawn

from a multinomial mixture with mixture coefficients n ={ n1,...,nk }. Then for video zj with

label lj , its foreground histogram H (z; , xj ) is drawn from the normal distribution 8 with

mean and covariance p| and Z, so
H@i xi)0 ¥ W2
Reducing the number of parameters to be estimated we assume the covariance Z| of each

cluster k to be diagonal: £y =diag(Akq,...,AkW )-1_ Finally, each video is assumed to have its
own independent background model (defined by parameters 8 ) which can be left

unresolved for the current object-discovery objective. The figure below summarizes the
above description of the generative model.

We maximize the likelihood of the model by marginalizing over the labels, which we treat as

hidden variables. Le., our objective is to llind parameters 6 = {0 F ,TMand foreground regions
X ={X1,..., Xp } to maximize:

N
Pz, )00 = | [Pl 0)p(x)
i=1

which can be expanded to

This corresponds to a video extension of results showing a generative model for
unsupervised object discovery in still images; the details appear in the accompanying article
(Chandrashekar, Torresani & Granger, 2012). As in that work, we can maximize the
proposed penalized likelihood via expectation maximization (EM), alternating between
estimating the distribution over the cluster labels | for each video zj , and solving for the

foreground models and locations.

If we treat the frames of a video as still images, then the previous work (Chandrashekar et al.,
2012) has shown how the foreground can be localized in them. We have subsequently
derived an extended method whereby not just the appearance model, but also the video’s
optic-flow constraints, can limit the search for object foregrounds in video frames. Unlike the
appearance model which is applied across videos in the dataset, the motion model is applied
only within each video, ensuring that videos with very different motion signatures for the
same objects can still contribute to the appearance model; i.e., the learned appearance model
generalizes over different motion signatures.

7
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Just as in our previous object recognition and localization methods, we can use two
distinct methods for foregrounding: either rectangular bounding boxes, or bottom---up
segmentation via superpixels.

7. Developmental learning

All of the methods described, as well as cited work from other labs that is referenced, contain
a dependency on initialization, which can also be thought of as identifying and setting priors.
For unsupervised learning, the initialization typically has a substantive impact on the quality
of the final results. The parameters requiring initialization in our model are: mixture
coefficients (g ); histogram means (M ) and variances ( 2k ); and foreground masks for all

video frames (x;"). Our first versions of these models initialized foreground masks by

matching all pairs of images, performing a co-segmentation, which is an expensive process.
Even this step was used only for stills; it was dispensed with in the case of videos, in favor of
using motion-based segmentation to get initial estimates of foreground masks.

A new method has been developed to use large amounts of unlabeled data to automatically
acquire approximations of priors. The method is generative and generates multiclass
classifications (both as opposed to discriminative methods such as SVMs).

The intuition is that of a “developmental” stage in which the system uses a specialized set of
rules on masses of otherwise uninterpreted data, to generate an initial tree that will
correspond to a large vocabulary of features and collections of features. These then will be
used from then on, in what an be thought of as the subsequent “adult” phase of the system,
for the tasks we have been studying (recognition, classification, localization). The data
structure acquired by the method is a hierarchy that contains information about vocabulary
features and their relations to each other; it is termed a branching object-relation notation
(BORN).

These trees are intuitively related to “vocabulary trees” of the kind described by Nister &
Stewenius (2006), for instance: tree structures that capture a vocabulary of image features
in a hierarchical form obtained by recursive application of K---means. We treat images as
collections of objects, embedded in various settings. The objects are represented in the
BORN structures which are constructed from very large collections of unlabeled images.

If the task is image retrieval alone, low-level feature-based representations may suffice, but
for tasks of recognition and localization, richer representations will be beneficial. From a
collection of unlabeled data (U) we identify object-like regions (via a published set of
methods for images, and via those methods supplemented with optic flow information for
videos). That collection of regions, O, is represented using simple bag-of-visual-words

8
Approved for public release; distribution unlimited.



(bovw) modeling, where h(0) is the histogram of features for object region 0 € O. We

recursively cluster this collection (similar to Nister & Stewenius 2006) by applying a
gaussian mixture model on the dataset to organize the appearance based clusters in the
form of a tree.

At each node t of the BORN tree, we have a collection of object regions o!. We assume a

generative framework in which h (Ot Jis modeled as a random variable drawn from a

gaussian distribution with parameters g% = {.l“«;t, Ef} i.e.,, the histogram is related to a

normal multinomial gaussian:
h(o®) ~ N (uf,Z7)
where | € {1,..., K} denotes the (unknown) cluster label of region o at node t in the tree. The

label / is assumed to be drawn from a multinomial distribution with mixture parameters n =

{m1,...,1K }-

We again use the EM algorithm to maximize the likelihood of the model by marginalizing over
the cluster labels; the likelihood function is:

p(0°16°) = nipfﬂj 1, = kl6)
o k=1

For each cluster, a new child node is created in the BORN tree under node t. The cluster
means and the variances ( ﬁlﬁ)for the child nodes are recorded and each cluster is further

subdivided using the same process, continuing until a maximum allowed tree depth. The
algorithm for producing the branching object-region notion tree is stated below:

9
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Input: U - A set of unlabeled images.
Output: BORN, rooted at r
Z=0
for image i € U do
O; = Object_Region Detector( 7)

end
Init: 77" = 7
Q={r};

while @ # () do
t+<— anodeinQ
Q—Q—1
if SUBDIVIDE(Z®) = true then
[0¢ &, Ci.xk]1=GMM (Z¢, K)
foreach Cluster C), do

Node ¢

Z€¢ = Ck
Bi = Bk
Q—QUc

end

end

end

3: Branching object-recognition tree

Once a BORN structure has been built from a large unlabeled dataset, we can use it to
perform image retrieval. Every image in the retrieval dataset is encoded via the BORN tree.
The similarity between a query image and an image in the database is determined by
comparing the paths that are taken through the tree, by object regions from the images.

Each object region in an image is first described as a histogram (using bag--of-
visual--words notation). Then the similarity between two images g and d can be
computed:

i

b e
Qi =nwj
dj =mjw;j
N
=|ln—

where wj is the weight of each node i in the tree. The variables nj and mj are the number

of descriptor vectors of the query and the database image respectively, with a path through
node i in the tree. N is the total number of images in the database, and Nj is the number of

images that have at least one object region passing through node i.

Once a BORN tree has been constructed, subsequent learning, which corresponds to
normal learning approaches such as learning label trees, can be thought of as “adult”

10
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learning, using the results of the developmental creation of the BORN tree as setting
priors for the adult stage (and thus substantially improving both learning rate and
accuracy). Our method for object detection and classification, described earlier (and in
Chadrashekar and Granger 2012), can be modified to use the BORN representation,
constructing a label tree as a subgraph of the BORN tree.

Classifiers that learn labeled trees have been shown to be more efficient than typical
approaches that learn 1-versus-test classifiers, as well as reducing recognition time -
often to order log of the size of the learned labeled tree (Deng et al 2011; Bengio et al,,
2010). All such methods, however, perform splits of the data by supervised means,
learning hyperplanes. In contrast, we introduced methods using unsupervised clustering
and localization via maximization of a single likelihood objective (Chandrashekar &
Granger 2012; Chandrashekar et al., 2012). In particular, we constructed labeled trees via
purely unsupervised splits of the data, iteratively “purifying” the clusters according to
whether the supervised labels, within the unsupervised clusters, were consistent.
Combining the two methods above can be seen as providing a natural framework for
performing joint recognition and localization to construct hierarchical representations;
moreover, the method is generative and thus can be used for multiclass classification.

The constructed labeled tree, as a subset of the BORN tree, contains only nodes where Nt
>0, i.e, all nodes in the BORN tree through which labeled training data has traversed.
Thus the primary task for adult learning is at each node t, the labeled data is to be divided
into K clusters. This is accomplished by performing a generative clustering and
foreground localization task by maximizing the objective function specillied in
Chandrashekar, Torresani & Granger (2012). The clusters created are treated as child
nodes of BORN tree nodes, with gaussian foreground parameters stored at the branch. We
then examine each cluster to see if it needs to be further split, via an algorithm very
similar to that described earlier for the CSL algorithm:
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Approved for public release; distribution unlimited.



Input: BORN, Dataset: Z « {< z;,y; >} with labels Y « {y; € {1,2,3..K}}
Output: Label Tree LT
Init: ¢ «— root node of BORN;
Zt—Z
Q—t
while Q # 0 do
t «+— node in Q
Q—Q—1
Yt —Y(ZY)
Nt T |Zt|
if |Yt| > 1 then
Init: z¥, ii* and X! using node t € BORN
Compute 8¢, z* by maximing £
fori =1:|B' do
c— B!
if C; # () then
A= C-,-,
Bf = 93
Q—QUc
end
end
end
end

4: Constructed labeled tree algorithm

The process of building BORN representations developmentally, and using them for
embedding labeled trees in subsequent adult learning, is illustrated here:

“Object Region” detector

Object region bovw Large unlabeled image collection

-

T T

Scalable object region tree

Label Tree

Labeled image dataset

5: BORN representation

In sum, this has been an initial proof of principle effort to investigate new approaches to
processing images, with an emphasis on moving images. Little prior work has been done on
the processing of purely unlabeled images, let alone unlabeled video images, despite the fact
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that the task of labeling data is among the most expensive (human-intensive) components of
image processing. We studied the development of novel methods for visual processing of
images and moving scenes. The work has substantially exceeded the initial proof of
principle aims: we have developed novel algorithms for object recognition and localization
in both still images and in videos, and have carried out initial evaluations comparing the
new methods with previous approaches in the literature. The results have been highly
promising and already have led to two publications (as well as a review paper). Ongoing
work is aimed at extending the initial findings to include a suite of advanced approaches to
the task of processing time-varying images.
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Although brain circuits presumably carmy out powerful perceptual algomthms, few instances
of darived biclogical methods have been found to compete favorably against algorithms
that hawe bean engineered for spacific applications_VWe forward a novel analysis of a subset
of functions of cortical-subcortical loops, which constitute more than 80% of the human
brain, thus likaly underlying a broad range of cognitive functions. We describe a family of
operations performed by the derved method, including & non-standard method for supesr
vised classification, which may undedie some forms of cortically dependent associative
learning. The nowel supervised classifier is compared against widely usad algorithms for
classification, including support vector machines [SWM] and k-nearest neighbor mathods,
achieving comesponding classification rates — at a fraction of the time and space costs.
This represents an instance of a biclogically derived algorithm comparing favorably againat
widely usad madchina |BEI'I'I‘rg miathods on well-studied tasks.

1. INTRODUCTION
Distinct brain circait designs exhibit different fanctions in homan
{and other animal) brains. Particularly notable are stndies of the
basal ganglta (striatal complex), which have arrived at closely-
related hypotheses, from Independent klaboratories, that the system
carries out a form of reinforcement leaming (Satton and Barto,
9o Schultz et al., 1997 Schultz, 2002 Daw, 2003% O°Doherty
et al, 2003 Daw and Doya, 2006); despite ongoing differences
In the particalars of these approaches, their overall findings are
surprisingly concordant, corresponding to a still-rare instance of
comvergent hypotheses of the computations produced by a partic-
ular brain circuit. Models of thalamocortical cirouitry have not yet
comverged to fondional hypotheses that are as widely agreed-on,
bt several different approaches nonetheless hypothesize the abil-
Ity of thalamocortical cirouits to perform unsupervised bearming,
discovering stracture in data {Lee and Momford, 2003; Rodrigeer
et al., 2004z Cranger, 2006 George and Hawikins, 2008). Yet thal-
amocartical and striatal systems do not typically act in tsolation:
they are tightly conmected In cortico-striatal loops such that viru-
ally each cortical area interacts with corresponding striatal reglons
[Kemp and Powell, 1971; Alexander and Delong, 1985; McGeorge
and Faull, 1988). The resulting cortico-striatal loops constitute
mexre than 80% of homan brain ciroaltry (Stephan et al, 1970,
1981; Stephan, 1972), suggesting that their operation provides the
underpinnings of 2 very broad range of cognitive fanctions.

We forward 2 new hypothesis of the Interaction between cor-
tical and striatal circoits, carrying out 2 hybrid of unsopervised
hierarchical leaming and reinforcement, together achieving a
cortico-striatal loop algorithm that performs 2 number of dis-
tinct operations of computational wtility, iInchading supervised
and unsupervised dassification, search, object and featare local-
Ization, and hierarchical memary organization. For porposes of

. beybrid mesdal, reinfercemant, unsupervisad

the present paper we focus predominantly on the partboular task
of supervised learning.

Traditional supervised kearning methods typically identify class
boundaries by focusing primeardly on the class kabels, whereas onsu-
pervised methods discover similarity strocture poorring within a
dataset: two distinct tasks with separate goals, typically carried out
by distinct algorithmic approaches.

Widely wsed supervised classifiers such as sopport vector
machines (Vapnik, 1955), supervised nenral networks (Bishop,
1926), and decision trees (Breiman et al., 1984; Buntine, 1592}, are
so-called discriminative models, which learn separators between
categories of sample data without learming the data itself, and with-
ot lluminating the similarity stracture within the data set being
classified.

The cortico-striatal loop (CSL) algorithm presented here is
“generative,” Le., It is in the category of algorithms that models data
oocurring within each presented class, rather than seeking solely
to identify differences between the classes (as would 3 “discrimi-
native” method). Generative models are often taken as performing
excessive work In cases where the only podnt Is to distingaish
among labeled classes (Mg and Jordan, 2002). The CSL method
mey thus be taken as carrying out more tasks than classification,
which we indeed will see it does. Monetheless, we observe the
behavior of the algorithm in the task of classification, and com-
pare 1t against discriminative classifiers such as support wectors,
and find that even In this restricted (though very widey used)
domain of application, the CSL method achieves comparable clas-
sification as discriminative models, and nses far bess compuatational
cost to do 50, despite carrying out the additional work entalled In
generative leaming.

The approach combines the two distinct tasks of unsapervised
classtfication and reinforcement, producing a novel method for yet
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anather task: that of supervised learning. The new method iden-
tifies sopervised class boundaries, 25 a byprodud of uncovering
structure in the Inpuot space that b Independent of the super-
vised kabels. It performs solely unsopervised splits of the data into
similarity-based chasters. The constiments of each sabchsster are
checked to see whether or not they all belong to the same intended
supervised category. If not, the algorithm makes another onsu-
pervised split of the cluster into subchusters, teratively deepening
the class tree. The process repeats until all chasters contain only (or
largely) members of a single snpervised class. The result s the con-
struction of 2 hierarchy of mostly mixed dasses, with the leaves of
the tree being “pare” categories, Le., those whose members contain
only (or mostly) a single shared supervised class label.
Some key characteristics of the method are worth noting.

» Only unsupervised splits are performed, so closters always
contain only members that are similar to each other.

» In the case of similar-looking data that belong to distinct super-
vised categories (eg. similar-booking terrains, one leading to
danger and one to safety), these data will constihate a diffi-
onlt discrimination; Le., they will reside near the boandary that
partitions the space into sapervised diasses.

» In cases of similar data with different class kabels, Le., difficalt
discriminations, the method will likely perform a smocession
of unsupervised splits before happening on one that splits the
dangerons terrains into 2 separate category from the safe omes.

In other words, the method will expend more effort In cases of
difficalt discriminations. (This characteristic is reminiscent of the
mechanism of sapport vedors, which ldentify those vectors near
the intended partition boundary, attempting to place the boundary
50 35 to maximize the distance from those vectors to the bound-
ary.) Moreover, in contrast to supervised methods that provide
expensive, detatled error feedback at each training step (Instrct-
Ing the method as to which snpervised category the Inpat shouald
have been placed in), the present method uses feedback that is
comparatively far more Inexpensive, consisting of 2 single bit at
each training step, telling the method whether or not an unsuper-
wised chaster Is yet “pure™; if so, the method stops for that node; if
not, the method performs farther onsupervised splits.

This deceptively simple mechanism not only produces a super-
wised classifier, but also uncovers the similarity stroctore embed-
ded In the dataset, which competing supervised methods do not.
Diespite the fact that competing algorithms (such 25 5V and Knn)
were designed expressly to obtain maximum accuracy at super-
vised classification, we present findings indicating that even on
this task, the CSL algorithm achieves comparable acooracy, while
requiring significantly less computational resounce cost.

In sum, the CSL algorithm, derived from the interaction of
cortico-striatal loops, performs an anorthodox method that rivals
the best standard methods in classification efficacy, yet does so In
1 fraction of the time and space required by competing methods.

2 CORTICO-STRIATAL LOOPS

The basal ganglta (striatal complex), present in reptiles as well as
In mammals, is thought to carry out some form of reinforcement
leaming, a hypothesis shared across 2 nomber of laboratories ( Sat-
tom and Barto, 1900 Schaltz et al., 1997; S5chultz, 2002; Daw, 2003;

O'Doherty et al., 2003 Daw and Doya, 2006). The actual nexral
mechanisms proposed involve action selection through 2 maxi-
mization of the corresponding reward estimate fior the action on
the task (see Brown et al., 199% Gumey et al., 20013 Daw and Doya,
2006z Leblods et al., 7006; Houk et al., 2007 for 2 range of views on
action selection). This reward estimation ocoors In most models
of the striatnm throngh the regulation of the output of the newro-
transmitter dopamine. Therefore, in computational terms we can
characterize the fanctionality of the striatum as an abstract seanch
throngh the space of possible actions, guided by dopaminergic
feedback.

The neocortex and thalamocortical loops are thought to hier-
archically organize complex fact and event information, a hypath-
esis shared by multiple researchers (Lee and Mumford, 2003
Rodriguez et al., 2004 Granger, 2006; George and Hawkins, 2009).
For stance, in Rodrigoer et al. (2004) the anatomically recog-
nized “core” and “matrix” subcironits are hypothesized to carry
out fiorms of unsapervised hierarchical categorization of static
and time-varying signals; and in Lee and Mumiford (2003), George
and Hawkins {2009), Riesenhuber and Poggio ( 199%), and Ullman
(2006) and many others, hypotheses are forwarded of how cortl-
cal circuits may construct compuatational hieranchies; these studies
from different labs propose related hypotheses of thalamocortical
circuits performing hierarchical categorization.

It iIs widely accepted that these two primary telencephalic strac-
tares, cortex and striatom, do not act in isolation in the brain:
they work in tight conrdination with each other {Kemp and Pow-
ell, 1971; Alexander and Delong, 1985 McGeorge and Famll,
1988} The nbiquity of this repeated architecture (Stephan et al.,
1970, 198 1; Stephan, 1972) suggests that cortioo-striatal circaltry
underlies 2 very broad range of cognitive functions. In particalar,
It is of Interest to determine how semantic cortical infirma-
tion could provide top-down constraints on otherwise too-broad
search during (striatal) reinfisrcement learning {(Granger, 20113,
In the present paper we sindy this interaction in terms of subsets
of the leading extant computational hypotheses of the two com-
ponents: thalamocortical circoits for unsepervised learning and
the basal gangliafstriatal complex for reinforcement of matches
and mismatches. If these bottom-up analyses of cortical and stri-
atal function are taken seriously, it Is of Interest to sady what
mechanisms may emerge from the interaction of the two mech-
anisms when engaged in (amatomically prevalent) cortico-striatal
loops.. We adopt straightforward and tractable simplifications of
these models, to smdy the operations that arise when the two
are interacting. Figore 1 iluostrates a hypothesis of the func-
tional interaction between unsupervised hierarchical chestering
(uhc cortex) and match-mismatch reinforcement (mm; striatal
complex), constituting the integrated mechanism proposed here.

The Interactions in the simplified algorithm are modeled in
part on mechanisms onthined In Granger (2006): 2 simplified
mdel of thalamocortical cironits produoces umsnpervised chus-
ters of the input dats; then, in the C5L model, the result of the
clustering, along with the corresponding supervised labels, are
examined by a simplified model of the striatal complex. The full
computational models of the thalsmocortical hierarchical chus-
tering and sequencing circult and striatal reinforcement-learning
chroult yleld imteractions that are onder ongoing stdy, and will, it
Is hoped, lead to farther derfvation of additional algorithms. For

Fromtiors in Compartational Neurcssionoa | [terative computations of cortioo-striatal loops
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assooited labals (8, B, stol (op nght Unsupervisad hisrarchical
chestening luho! categonzes the inputs by thair smilanty, without initial
ragard to labsls. (Far right! The match-mismatcth madhanism imml matthes
tha clams momborship lzhaks within aach of thesa ursupervised astegonos.
H the membars of & mbegory all keve the mme imatching! lebeks, & "4” =
ratumed; F thara are mismatches, & " is raturned. Bottom nightl In tha
trea bry rasting subdustars tag., ceniral nods in tha diagrami; thesa n
turn are deeckad for kebal norsEtenoy, as bofors. Tha prooess Martas umntil
tha leat nodes of the unsuparsad tree contain only cabegory membars of
= singks lsbal. Ses oot

the present paper, we ose Jost small subsets of the hypothestmed
functions of these structures: solely the hypothesizned hierarchical
clostering functéon of the thalamocortical circult, and 2 very-
rednced subset of the reinforcement-learning capabilities of the
striatal complex, snch that it does nothing more than compare
(match / mismatch) the contents of 2 proposed category, and
return a single bit corresponding to whether the contents all have
been labeled 25 “matching” each other {1} or not (0). This wery-
reduced RL mechanism can be thought of simply as rewarding
or punishing a category based on its constituents. In particu-
lar the proposed simplified striatal mechanism retorns 2 single
bit {correct/incorrect) denoting whether the members of 2 given
unsupervised chuster all correspond to the same supervised ®label.”
If not, the system returns a "no” (*-7) to the unsopervised chester-
Ing mechanism, which in tum iterates over the cluster produocing
another, still onsupervised, set of subchasters of the “impure”™
closter. The process contimees until each onsupervised subcluster
contains members only (or mostly, In a variant of the algosithm)
of a single category label.

In sum, the mechanism uses only unsopervised categorization
operations, together with category membership tests. These two
mechanisms result In the eventual iterative arrival at categories
‘whose members can be considered in terms of supervised classes.

Since only unsupervised splits are performed, categories (chas-
ters) always contain only members that are similar to each other.
The tree may generate multiple terminal leaves corresponding to
1 given class label; In such cases, the distinct leaves correspond
to dissimilar class snbcategories, eventually partitioned into dis-
tinct leaf modes. The mechanism can halt rapidly if all supervised
classes correspond to similarity-based chasters; Le., if class labels

are readily predictable from their appearance. This corresponds
to an “easy” discrimination task. When this is not the case, Le, In
Instances where similar-looking data belong to different labeled
categories (e.g., similar mushrooms, some edible and some polso-
nious), the mechanism will be triggered to snccessively subdivide
clusters into subclnsters, as though searching for the characteristics
that effectively separate the members of different kabels.

In other words, less work Is done for “exsy™ discriminations:
and only when there are difficult discriminations will the mech-
anism perform additional steps. The tree becomes Intrinsically
unbalanced 25 a function of the hampiness of the data: branches
of the tree are only deepened in regions of the space where the
discriminations are difficalt, Le., where members of two or more
distinct sopervised categories are close to each other in the Inpat
space. This property s reminiscent of support vectors, which iden-
tify boundaries in the reglon where two categories are closest (and
thms where the most difficolt discriminations ocoar).

A final salient feature of the mechanism is 1ts cost. In con-
trzst to supervised methods, which provide detalled, expensive,
error feedback at each training step (telling the system not only
when 12 mischessification has been made but also exactly which class
should have oocurred), the present method uses feedback that by
comparison Is extremely inexpensive, consisting of 2 single bit, cor-
responding to either “pure” or “Impure™ chasters. For pure clusters,
the method halts; for impore closters, the mechanism proceeds to
deepen the hierarchical tree.

As mentioned, the method & generative, and arrives at rich
miedels of the learmed Inpuot data. It also produces muoltickss
partitioning as 3 natural consequence of its operation, unlike
discriminative supervised methods which are inherently binary,
requiring extra mechanisms to operate on muoltiple classes.

Orverall, this deceptively simple mechanism not only produoces
1 supervised classifier, but also uncovers the similarity stracture
embedded in the dataset, which competing snpervised methods do
not. The terminal beaves of the tree provide final class information,
whereas the internal nodes provide further information: they are
milxed categories corresponding to meta labels (e.g., soperordinate
categories; these also can provide information abont which classes
are likely to become confused with one anather during testing.

In the next section we provide an algorithm that retains func-
tional equivalence with the biological model for supervised learn-
Ing described above while abstracting out the implementation
details of the thalamocortical and striatal circuitry. Simplifiing
the implementation enables investigation of the algorithmic prop-
erties of the model independent of its implementation details
{Marr, 1950). It also, iImportantly, allows us to test our model on
real-world data and compare directly against standard machine
leaming methods. Using actual thalamocortical cirouitry to per-
form the unsopervised data clostering and the mechanism for
the basal ganglia to provide reinforcement feedback, wonld be
an interesting task fior the distinct goal of Investigating potential
Implementation-level predictions: this holds substantial potential
fioer fiatre research.

‘We emphasize that our focus is to nse existing hypotheses of
telencephalic component fanction already posited in the literatare:
these mechanisms kead os to specifically propose 2 novel method
by which sapervised learning is achieved by the unlikely route of

‘wena fromtiarsin.ong
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combining unsupervised learning with reinforcement. This kind
of computational-level abstraction and analysis of biological entl-
ties contimaes in the tradition of many prior works, Incloding
Sori and Schultz (2001), Schultz (2002), Daw and Doya (2006),
Lee and Mumiord (2003), Rodrigmez et al. (2004), George and
Hawkins (2005), Marr (1980), Riesentmber and Poggio (1999),
Uliman (2006), and many others.

3 SIMPLIAED ALGORITHM

In our simplified algorithm, we refer to a method which we
term PARTITION, corresponding to any of a family of clester-
Ing methaods, Intended to captore the chastering functionality of
thalamocortical loops as described in the previows sectbons; and
we refer to 2 method we term SUBDIVIDE, corresponding to
any of a family of simple reinforcement methods, intended to
capture the relnforcement-leaming fanctionality of the basal gan-
gliafstriatal complex as described in the previons sections. These
operate together in an iterative loop corresponding to cortico-
striatial {chster—reinforcement) interaction: SUBDIVIDE checks
for the “terminating™ conditions of the iterative loop by examin-
Ineg the labels of the constiments of a glven closter and retuming
1 true or fals response. The resolting training method builds a
tree of categories which, a5 will be seen, has the effect of per-
forming supervised leaming of the classes. The leaves of the tree
comtain dass labels; the intermediate nodes may contaln members
of classes with different labels. Doring testing, the tree i traversed
to obtain the label prediction for the new samples. Each data sam-
ple (belonging to one of K lbeled classes) s represented as a vector
x e ™. During training, each such vector x; has 2 corresponding
labed e 1, ... K. {The subssquent " Experiments™ section below
describes the methods nsed to transform raw data such as nat-
ural images into vector representations in a domain-dependent
fashiom.}

1. TRAINING

The Ingut ko the training procedure s the training dataset consist-
Ing of {x;, ¥} palrs where x; is an input vector and y; s its intended
class label, a5 in all supervised leaming methods. The ontput Is 2
tree that is built by performing a snocession of nnsupervised splits
of the data. The data corresponding to any given node in the tree
15 2 subset of the original training dataset with the full dataset cor-
responding bo the root of the tree. The action performed with the
data at 2 node In the tree is an unsupervised split, thereby generat-
Ing similarity-based closters (subclosters) of the data within that
tree node. The unsupervised split results in expansion (deepening)
of the tree at that node, with the dhild nodes corresponding to the
newly created onsupervised data clusters. The duster represen-
tations corresponding to the children are recorded In the corrent
node. These representations are used to determine the local branch
that will be taken from this node during testing, in order to obtain
1 class prediction on a new sample. For each of the new children
nodes, the labels of the samples within the chaster are examined,
and if they are deemed to be sufficiently pore, Le., 2 snfficient per-
centage of the data belong to the same class, then the child node
becomes a (terminal) leaf in the tree. If not, the node & added
to a quene which will be subjected to further processing, growing
the tree. This quewe is initialized with the root of the tree. The

procedurne {sketched in Algorithm 1 below) proceeds until the
quene becomes empty.

To summeartze the mechanism, the algorithm attempts to find
clusters based on appearance similarity, and when these dusters
don't match with the Intended (supervised) categories, relnforce-
ment simply gives the algorithm the binary command to elther
split or not split the errant cluster. The behavior of the algorithm
on sample data is ilhstrated in Figare 2. The Inpat space of images
Is partitioned by successively splitting the corresponding training
samples into subclusters at each step.

AL1L Picking the right branch f&ctor

Since the main free parameter In the algorithm 15 the nomber
of unsupervised chasters to be spawned from any given node In
the hierarchy, the Impact of that parameter on the performance
of the algorithm should be studied. This goantity corresponds
to the branching factor for the class tree. We initially propose a
single parameter 2s an upper bound for the branch factor: K™,
which fixes the largest nomber of branches that can be spawned
from any node in the tree. Through experimentation {discussed
In the Results section) we have determined that (1) very small val-
ues for this parameter resalt in slightly lower prediction accaracy:

Input: Damset: X« [z 0 89 with label
Vo [goo [1,2,8.5]]
Duiput Class Tree; A ree tocted ab the node
I'leot
Init: THoot X = X, TRoolY - ¥; TReot Labels -
LABELSET{Y}
O L Acdil), TRool),
while ) is not oeipry do
qn = Firsl node in O
il SUBDIVIDEA . ¥ b = L Lhen
[Centroids, Clusters] = PARTITICON (X,
K
foeach Cluster 17 dn
Mode T
T.X = Clusters[k]
T.Labels = LARFLSETIYT.X))
I|1'I.HTHT.I'.|'II.-'h|.|\'I = Centnds] k]
yuChildeen k] =T
Adudicy, 1
end
EI'Iil
end

Algosithm 1 | A skstdh of tha C5L lemming algorithm. The: mathod
consructs & mets chss tree, vihich reconds unsupervised struotors within
tha datz, 2= well as providing 2 maans 1o perform oless prodiction on noval
samples. The funciion termad FARTITION donotas an unsupservised
chestening algorithm, which man in principle ba any of a family of dhstering
routines; selections for this slgorthm ans desoribed later in the text. Tha

ine SUBOWIDE determines ¥ tha data at & tres noda gn &l balong
1o tha =ama dass or not. If the data come from mulipla dassas,
SURDNDE ratums fug and othersiss, s, Soa tout for further
desoription of tha derration of the sigorithm.
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AGURE 2 | A simplified illustration of the iterative laaming promess with  damtaly ol tha dusters formed are pure with respadt 1o thar labsés For
lahaled data Images aro suocossialy spht into two partitions in an marh split, on sither sids: of tha dividing hyparplna, tha mazns are shown z=s
wrssupervised fasheon .o, by smilanty. The parirboning of data promeds an overday of the mages that fall on e cormesponding s of the hyperpkine.

(1) for sufficiently large valoes, the parameter setting has no ség-  requiremnents of the clostering agorithm and thos the mantime of
nificant impact on the performance efficacy of the classifier; and  the learning stage (see the Resnlts section below for farther detal).
(1) larger vales of the parameter modestly Increase the memory (It is worth noting that selection of the best branch factor valoe
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may be obtained by examination of the distribution of the data
to be partitioned in the input space, enabling mtomatic selection
of the Ideal mamber of unsupervised clusters withowt reference
to the number of distinct kabeled classes that oomar in the space.
Future work may entail the study of existing methods for this
approach, Baron and Cover, 1991; Teh et al, 7004, as potential
adjunct improvements to the CSL method.)

iz TREE PRUNING

Categorization algorithms are often subject to overfitting the data.
Aspects of the CSL algorithm can be formally compared to those
of decision trees, which are subject to overfitting.

Unbike dectsion trees, the classes represented at the beaves of the
CSL tree need not be regarded 35 confunctions of attribote valoes
on the path from the root, and can be treated as fully represented
classes by themselves. (e refer to this as the “leaf Independence™
property of the tree; this property will be used when we describe
testing of the algorithm in the next section.) Also, since the splits
are unsupervised and based on multidimensional similarity {also
unlike deciston trees), they exhibit robustness wort variances in
small subsets of features within a dass.

Both of these characteristics (beaf independence and unsuper-
wised splitting) theoretically lead to predictions of less overfitting
of the method.

In addition to these formal cbservations, we studied overfit-
ting in the CSL method empirically. Analogously to deciston trees,
we could choose efther to stop growing the tree before all leaves
were perfiectly pure (and potentially overfit), or to build 2 full
tree and then somewhat prume it back. Both methods Improve
the overfitting problem observed in decision trees. Experlments
‘with both methods in the C5L algorithm foond that neither one
had a significant effect on prediction accuracy. Thus, sorprisingly,
both theoretical and empirical studies find that the CSL class trees
generalize well without overfitting: the method s nnexpectedly
resistamt to overfitting.

13 TESTING

Dring testing, the algorithm is presented with previowsly unseen
data samples whose dass we wish to predict. The training
phase created an appearance-based dass hierarchy. Since the
tree, Including the “pore cass™ leaves, Is generative in nature,
there are two alternative procedures for class prediction. Ome
15 that of descending the tree, as is done In decision trees.
However, in addition, the “beaf Independence™ property of the
CSL tree, as described In the previous section (which does
not hold for decision trees), enables another testing method,
wilich we refer to as KNMN-on-leaves, In which we only attend
to the leaf nodes of the tree, as described In the second sub-
section below. (This property does not hold for decislon trees,
and thos this additional testing method cannot be applied to
decision trees). The two test methods have somewhat different
memary and computation costs and slightly different prediction
a0Curacles.

21311 Tree descent
This appraach starts at the root of the class tree, and descends. At
every node, the test datum s compared to the chester centrodds

stored at the node to determine the branch to take. The branch
taken corresponds to the cosest centroid to the test datom; Le.,
1 decision Is made locally at the node. This provides us 2 unique
path from the root of the class herarchy to a single leaf; the stored
categary label at that beaf is wsed to predict the label of the Inpat.
Dhae to tree pruning (described above), the leaves may not be com-
pletely pure. As 2 resnlt, instead of relying on any given dhass being
present in the leaves, the posterior probabilities for all the cate-
gories represented at the beaf are wsed to predict the class kabel for

the sample.

1312 KNN-on-leaves

In this approach, we make 1 note of all the leaves in the tree,
along with the cluster representation In the parent of the leaf nodie
corresponding to the branch which leads to the leaf. We then do K-
nearest neighbor matching of the test sample with all these cluster
centrobds that correspond to the leaves. The final label predicted
corresponds to the label of the leaf with the closest centroid. This
approach implies that only the leaves of the tree need to be stored,
resulting in a significant reduction In the memory required to
store the leamed model. However, a penalty is paid in recognition
time, which in this case is proportional to the nomber of leaves In
the tree.

The memory required to store the model In the tree descent
approach Is higher than that for the KNN-on-lexves approach.
However, tree descent offers 2 substantial speedup In recognition,
15 comparisons need to be performed only along a single path
throngh the tree from the root to the final leaf. The algorithm 1s
sketched below in Alporithm 2.

Wi expect that the KENMN-on-leaves variant will yield better pre-
diction accuracy as the decision s made at the end of the tree and

Imput: ¢ #£%, Class troe: Lot
Output: & < 1 A

Imit: Tree MNode T = TRoot
while 1 5= ot iy dn

sl b = U

for & o= U [Lcthildves ) do

s = SINTLARTTY (5, T enbroads[k])
it s =orosrFon then
masSim = sim

pranch = k

end
T = TChildren[branch]

ond

v o= L Labelset

Algosithm 2 | & skgtdh of tha tres desoent algorithm for dessifying a now
datz sample. Tha mathod stars at the root node and dascands, testing the
sample defern ageinst each node snoounterad o determirs the brandh 1o
salect for further descent. Tha rasult & a uniqus path from the root toa
singla leat; the stored catagory at that leef is the prediction of the kbel of
tha input. In tha @vant of mpors leawes, the posteror probehiities for all
categories in the keaf aro usod to prodict the dasx kb of the sampla. Soo
tomet for further desoription.
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hence the partitioning of the input space 1s expected to exhibit
better generalization. In the case of tree descent, since decisions

are made locally within the tree, If the dataset has high variance,
then it is possible that 2 wrong branch will be taken eardy on in the
tree, leading to inaccurate prediction. This problem 1s comman to
1 large family of algorithms, induding decision trees. We have per-
formed experiments to compare the two test methods: the results
confirm that the KNM-on-leaves method exhibits marginally bet-
ter prediction than the tree-descent method. The behavior of the
two methods is lhastrated in Figure 3.

4. CLUSTERING METHODS

The only remaining design cholce 1s which unsupervised ches-
tering algorithm to employ for successively partitioning the data
during training, and the corresponding similarity measure. The
choice can change depending on the type of data to be classified,
while the overall framework remains the same, ylelding a poten-
tial family of closely related wariants of the CSL algorithm. This
enables Aexibility in selecting a partioular unsnpervised chestering
algnrithm for a given domain and dataset, without modifying any-
thing else in the algorithm. {Using different chestering algorithms
within the same class tree s also feasible as all decislons are made
locally in the tree.)

There are mumerons chestering algorithms from the simple and
efficient k-means { Lioyd, 1982 ), self organizing maps (S0M: Kaski,
1957} and competitive networks { Eosko, 1991), to the more elabo-
rate and expensive probabilistic generative algorithms like mixture
of Gaussians, Probabilistic latent semantic analysis (PL5A; Hoff-
man, 1999} and Latent Dirichlet Allocation {LDA: Blei et al., 2003);
each has merits and costs. Given the bislogical derivation of the
system, we began by choosing k-means, a simple and Inexpen-
sive chastering method that has been discussed previounsly as a
candidate system for biological clustering (Darken and Moody,
1920 the method could Instead wse 50M or competitive learn-
Ineg, two highly related systems. (It remains quite possible that more
rotrst {and expensive) algorithms sach a5 PLSA and LDA could
provide improved prediction accuracy. Improvements might also
arise by treating the data at every node a5 a mixture of Gans-
sians, and estimating the mixtare parameters nsing the expectation
rreaxirmization (EM) lgorithm.)

41. kMEANS

k-Memns is one of the most popular algorithms to cluster m vec-
tors based on distance measare into k partitions, where k< m It
attempts to find the centers of nataral chasters in the data. The
objective that k-means tries to minimize is the total tmera duseer

AGURE 3| Twe mathods by which the CSL algorithm pradicts
category ip at tast time. (Laftl Class prediction via
himmarchical dascant. At sadh sep. a new Wnknosn sampls will fal
on one o the: other side of a chesificstion The decision
provices 2 path $irough the diass troa at sadh noda. At the loaves, tha

e preciiction is obtained. The numbering gves tha ordar inwhidy
the hyperplanes are probed. Hight! Class prediction using only leves
of dass tree. All leavwes are comsidered Smutaneosly; the test
sampla i oompared to sadh leaf and the dass prodiction & ohtaired
using KNN.
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varlance, of, the squared error function:

K
d=3" 3 (g-p

=l 5

where there are K chasters 5, 1=1,2, ., K and p, Is the centroid
or mean point of 3l the podnts x5 G

‘When k-means is used for the unsupervised appearance-based
clustering at the nodes of the class tree, the actual means obtaimed
are stored at each node, and the similarity measare & inversely
proportional to the Fuclidean distance.

411 initiazing clusters
In general, ansupervised methods are sensitive to Inltialization.

We Inittalize the clostering algorithm at every node in the class
tree x5 folbows.

If we are at node I, with samples having one of K] labels, we first
determine the class averages of the Kj categories. (For every class,
‘we remave the samples which are at least 2 standard deviations
away from the mean of the class for the Initializatéon These sam-
ples are considered for the subsequent unsupervised dustering. )
If the mumber of dusters (branches), K* = min (K k™) toms
ot to be equal to Kj, then the averages are used as the seeds for
the chastering algorithm. If however K* < Kj, then we nse a simple
and efficient method for obtaining the initial chasters by nsing an
Inittal mun of k-means on the K| averages in order to obtain the
K* initial centrodds. The data samples are assigned to the chas-
ters wsing nearest nelghbor mapping, and the averages of these K*
clusters are nsed as seeds for 2 subsequent mn of the onsuper-
wised chastering algorithm. {In our emplrical experiments we have

nsed the k-means+-+ variant of the popular chastering :Jg:lrlﬂm
to obtain the indttal chaster seeds; Arthor and Vassilvitskn, 2007.)
Figure 4 illustrates the initlalization method. (While the method
works relatively well, forther studies indicate that other meth-
ods, which directly utilize the semantic stmdwure of the labeled
dataset, can result in even better performance. These altemnate
approaches are not discussed In this paper in order to keep the
fioczs om introducing the core algorithm.) It & worth noting that
the inittalization method can be thowght of in terms of a kogically
prior “developmental™ period, In which mo data is actually stored,
but instead sampling of the environment &s used to set parameters
of the method: those parameters, once fixed, are then wsed in the
smbsequent performance of the then-"adult™ Algorithm (Felch and
Granger, 2008).

5 EXPERIMENTS
The proposed algorithm perfiorms a nomber of operations on
Its input, incloding the unsupervised discovery of structore In
the data. However, since the method, despite being composed
only of unsupervised clustering and reinforcement bearning, can
nonetheless perform supervised learning, we have mun tests that
Imvolve using the CSL method solely as a supervised classifier.
In addition to these tests of supervised leaming alone, we then
briefty describe some additional findings flhestrating the CSL algo-
rithm’s power at tasks beyond the dassification task {Including the
tasks of identifying strocture In data, and localizing objects within
Images).

‘When viewed solely as a supervised classifier, the C5L method
bears resemblances to two well-studied methods In machine learn-
Ineg and statistics, and we rigorously compare these. We compared

Ty - w
N[ ﬂ

[Data to ba classified at & givan noda in thae class trae with brench fnm.:-r =2

* Calewater lE

AGURE 4 | Initizliration of the nsmporvised partitioning for 2 sat of
lahalzd training sxamples. Tha ilustation dopscts tha prooess whan

Camel -~ ‘\Eu‘l.erﬂy Ellnc-culars
_Means CT T T T |||='_.
== kmeans, k=2 o=
Cenbroide: C T T T T 1 CT—T 1
‘_.f
™ Inlhﬂllmngﬁnﬂrs
Samples; r—— H means I{-E =

dasired mumber of dusters (in ths @empls, 2 is lows than the aoial numbar
of baled dasses roprasamiad in the datzmst in this ammple, 4] o ba
working with image datessts. Tha mathod resds to be applied onky when tha  dustored.
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the accoracy, and the time and space costs, of the C5L algo-
rithm 25 2 supervised classifier, against the support vector machine
(5¥M) and k-nearest neighbor (KMN) algorithms. Performance
‘was examined on two well-studied poblic datzsets.

For SVM., we have used the popuolar LIbSVM implementation
that is publicly available {Chang and Lin, 2001). This package
Implements the “one vs one™ flavor of molticlass dassification,
rather than “one vs rest” variant based on the findings reported
In Hsn and Lin (2002). After experimenting with a few kernels,
we chose the linear kermel since it was the most efficlent and
espectally since It provided the best 5VM results for the high-
dimensional datasets we tested. It 15 known that for the linear
kernel 2 weight wector can be computed and hence the support
vectors need not be kept In memary, resulting In low memory
requirements and fast recognitéon time. However, this i not troe
for non-linear kernels where sopport vectors need to be kept
In memory to get the dass predicions at mn tme. Since we
wish to compare the classifiers in the general setting and it Is
likely that the kernel trick may need to be employed to separate
non-linear input space, we have retained the implementation of
LIbSVM as it is (where the snpport vectors are retained in mem-
ory and used during testing to get class prediction). We realize
this may not be the fairest comparison for the current set of
experiments, however, we believe that this setting is more reflec-
tive of the typical use case scenario where the algorithms will be
employed.

For KNMN we have hand coded the implementation and set
the parameter K= 1 for maximmum effidency. (For the C5L algo-
rithm with KNM-on-leaves, we use K = 1 a5 well.) The test bed 15
1 machine running windows XP 64 with 8GB memory. We have
not wsed hardware acceleration for any of the algorithms to keep
the comparison fair.

We have used two popular datasets from different domains
with wery different characteristics (Inclading dimensionality of
the data) to fully explose the strengths and weakmesses of the algo-
rithm. Ome Is 2 subset of the Caltech-256 Image set, and the other 1s
1 very high-dimensional datzset of neuroimaging data from MR
experiments, that has been widely studied.

For both experiments, we performed multiple rums, differently
splitting the samples from each class into training and testing sets
{roughly equal In nomber). The results shown indicate the means
and standard deviations of all runs.

51. DBJECT RECOGNITION

Onar first experiment tests the algorithm for object recognition
In meatural still image datasets. The task 15 to predict the label
for an Image, having bearmed the various classes of objeds In
Images through a training phase. We report empirical findings
for prediction accuracy and computational resources required.

511 Demset
The dataset nsed consists of 3 subset of the Caltech-256 dataset
(Griffin et al., 2007) nsing 39 categories, each with roughly 100

Instances. The categorles were specifically chosen to exhibit very
high between-category similarity, Intentionally sebected as a very
challenging task, with high potential confusion among classes. The
categories ane:

» Mammals: bear, chimp, dog, elephant, goat, gorilla, kangaroo,
leopard, racooon, zebra

» Winged: duck, goose, hummingbird, ostrich, owl, penguin,
swan, bat, cormorant, botterfly

» Crawlers  (reptiles/insects/arthropods/amphiblans):  iguana,
cockroach, grasshopper, housefly, praying mantis, scorpion,
snail, spider, toad

» Inanimate objects: backpack, baseball glove, binoolars, bull-
dozer, chandeliers, computer monitor, grand plano, ipod,
laptop, microwave.

Wi have chosen an extremely simple (and very standard) method
fior representing images in order to maintain foows on the descrip-
tion of the proposed classifier. First a featnre vocabuolary consisting
of SIFT features {Lowe, 2004) is constrocted by munning k-means
on 2 random set of Images containing examples from all classes of
Interest; each Image is then represented as a histogram of these fea-
tures. The positions of the features and their geometry b ignored,
simplifying the process and reducing computational costs. Thus
each image Is a vector x € R™, where m is the size of the scquired
vocabulary. Each dimension of the vector is 2 count of the number
of times the partioalar featnre oocurred In the image. This rep-
resentation, known as the “Bag of Words” has been successfolly
applied before in several domains incloding object recognition In
Images (Sivic and Zissermam, 2003).

Wi ran a total of 8 trials, corresponding to & different random
partitionings of the Caltech-256 data into training and testing sets.
In each trial, we ran the test for each of a range of Kggy vahaes, to
test this free parameter of the C5L model.

E12 Prediction scourscy

The graph In top left of Figare 5 compares the classifier pre-
diction acoaracy of the proposed algorithm with that of SV Ms
on the 3% subsets of Caltedh-256 described earier. As expected,
the simplistic Image representation scheme, and the readily con-
fused category members, renders the task extremnely difficult. It
will be seen that all classifiers perfiorm at a very modest suocess
rate with this data, Indicating the difficulty of the dataset and
the considerable room for potential Improvement in classtfication
techmigques.

The two vartants of the CSL algorithm are competitive with
S5VM: 5VM has an average accuracy of 23.9%%; CSL with tree
descent has an average acooracy of 19.4%: and C5SL with KNN-
on-leaves has an average prediction acouracy of 21.3%%. The KNN
algorithm alone performs relatively poodly, with an average predic-
tion accwracy of 13.6%. Chance probability of correcthy predicting
1 class i1s 1 ont of 39 (2.56%).

It can be seen that the branch factor does not have a signif-
lcant Impact on error rates. This is possibly becamse the class
tree grows until the leaves are pure, and the resulting Internal
structure, though different across chodoes of K™, does not signif-
Icantly impact the nitimate classifier performance as the hieranchy
adapts its shape. Different internal stmcture conld significantly
affect the performance of the algorithm on tasks that depended
on the similarity stracture of the data, but for the sole task of
supervised classification, the tree’s internal nodes have little effect
on prediction accuracy.
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12 Memory usape
The graph in top right of Figmre 5 shows the relationship between
the overall mamber of nodes in the tree to be retained (and hence
vectors of dimensionality M) and the branch factor for CSL clas-
sifier. CSL with tree descent had to store an average of 1036.25
vectors, while the knn-on-leaves variant had to store 902.21 vec-
tors. 5WM required 2286 vectors while the vanilla KNN method
{with k= 1) requires storage of the entire training corpus of 2322
vectors. Thus, the nomber of vectors retained in memory by the
C3L vartants is ronghly half the nomber retained by the 5VM and
KNN algorithms. Further, the memory needed to store the trained
model when we predict using the KNMN-on-leaves approach 1s
smaller than when we use tree descent, 35 we expected and dis-
cussed eardier. As can be seen, there & not much vartation in CSL
across different branch factor values. This suggests
that after a few initial splits, most of the sub trees have very few

categories represented within them and hence the upper boand
on the branch factor does not play a significant role In ongoing
performance.

Eld Classifier rum times

The runtime costs of the algorithms paint an even more startling
picture. The graph in bottom left of Figore 5 shows the plots
comparing the training times of the C5SL and 5VM algorithms.
The two variants of C5L have the same training procedure and
hence require the same time to train. (KNM has no explicit train-
Img stage.) As can be seen, the training time of the new algorithm
{awerage of 2.42 5} Is ronghly an order of magnitude smaller than
that of the 5Wh (2verage of 18.545). It shonld be clearly noted
that comparisons between Implementations of algorithms will not
necessarily reflect underlying computational costs inherent to the
algorithms, for which forther analysis and formal treatment will be
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required. Monetheless, in the present experiments, the empirical
costs were radically different despite efforts to show the 5VM In
Its best Hght.

As Indicated earlier, the cholce of branch factor does not have a
large impact on the training time needed. We also foond that the
‘working memory requirements of our algorithm were very small
compared to that of the 5V kL In the extreme, when large represen-
tations were used for Images, the memory requirements fior 5V Ms
rendered the task entirely impracticable. In such cirrumstances,
the C5L method still performed effectively. The working amoant
of memory we need 15 proportional to the largest chustering job
that needs to be performed. By choosing low valnes of K™, we
empirically find that we can keep this requirement low withont
loss of classifier performance.

The bottom right plot of Figare 5 shows how the average
time for recognizing a new Image vares with branch factor
The times are shown in logarithmic scale. The C5L variants are
an order of magnitude faster than KNMN and SV¥M algorithms
with the tree descent variant being the Exstest. This shows the
proposed algorithm in its best light. Once training Is complete,
recognition can be extremely rapid by doing hlerarchical descent,
making the CSL method unosually well solted for real-time
applications.

52 HAXEY iMRI DATASET, 2001

21 Demset

Having demonstrated the CSL system om image data, we selecbed
a1 very different dataset to test nenroimaging data collected from
the brain activity of homan subjects who were viewing plctores.
As with the Caltech-256 data, we selected a very well-studied set
of AMR] data, from a 2001 stady by Haxby et al. {2001).

Six healthy human volunteers entered an fMEI nenroimaging
apparatus and viewed 2 set of pictures while their brain activity
(blood oxygen-level dependent measures) was recorded. In each
rum, the subjects passively viewed gray scabe Images of elght object
categories, grouped in 245 blocks separated by rest perlods. Each
Image was shown fior 500 ms and was fiollowed by 2 1500-ms inter-
stimmhas interval. Each subject carried out twelve of these mms.
The stimuli viewed by the subjects consisted of images from the
following edght classes: Faces, Cats, Chairs, Scissors, Houses, Bot-
tles, Shoes, and random scrambled pictares. Foll-brain MBI data
‘were recorded with a volame repetition Ume of 2.5 5, thus, a stim-
ulus block was covered by roughly @ volumes. For a complete
description of the experimental design and M RI acquisition para-
meters, see Haxby et al. (2001 ). {The dataset 1s publidy avallable )
Fach fMRI recording corresponding to 1volume in a block for
1 given Input image can be thonght of a5 2 vector with 163840
dimensions. The recordings for all the subjects have the same vec-
tor length. (In the original work, “masks™ for individual brain
arexs were provided, retaining only those voxels that were hypoth-
esized by the experimenters to play a significant role in object
recognition. Using these masks reduces the data dimensional-
Ity by a large factor. However, the masks are of different bengths
for different snbjects, thus preventing meaningful aggregation of
recordings across subjects. Thus, we have not used the masks and
Instead trained the classifiers in the original high dimensional
space.)

E22 Testing on indiviohe| suljects

For each subject who participated In the experiment, we have nen-
roimaging data collected as that subject viewed Images from each
ofthe elght classes. The task was to see whether, from the brain data
alone, the algorithms could predict what type of picture the sobject
was viewing. Top left in Figmre 6 shows the prediction accuracy
of the various classifiers we tried. On the whole, all the classifiers
exhibit similar performance with 5VM performing slightly better
on 2 conple of the subvjects.

Top right of Fignre & shows the memory requirements fior all
the algorithms. The CSL variants require significantly less mem-
ory to store the model learmed during training compared to SWVM
and EKMM. 5WM requires 2 large mamber of support vectors to
fully differentiate the data from different classes leading to Large
memary consumption, whereas KNN needs to store all the train-
Ing data in memaory. For CSL, If the testing method & tree descent,
then the entire hierarchy needs to be kept iIn memory. For the
KMNMN-on-leaves testing method, only the leaves of the tree are
retained, rendering even a smaller memory requirement for the
stored model.

Bottom left of Figore 6 shows the training time for the C5L
algorithm being an order of magnitade smaller than that of S¥M.
KNN does not have any explicit training stage. Finally, botbom
right of Figure & compares the recognition time for the differ-
ent algorithms, again on a beg scale. The average recognition time
on 1 new sample for the CSL tree descent variant is 2 couple of
orders of magnitude smaller than both KNMN and 5WM. For the
KNMN-on-leaves varlant of the CSL method, the recognition time
grows larger (while still being significantly smaller than KMM or
SVM ). Therefore the Eastest approach is performing a tree descent
(paying a penalty in terms of memory requirements for storing
the model ).

523 Aggregating dets scross suljects

Since the recordings from all the subjects have the same dimen-
sionality, we can merge all the data from the different subjects
into 1 large dataset and partition it into the training and test-
Ing datzsets. This way we can study the performance trends with
Increasing datzsets. The 5¥M system, onfortunately, was unable
to run on poods containing more than two sobjects, doe to the
5VM system’s high memory requirements. Monetheless, the two
variants of the C5L algarithm, and the KMN algorithm, ran suc-
cessfolly on collections containing up to five subjects” aggregated
data.

The subplot on the left of Figmre 7 shows that the classtfication
prediction accwracy of the different classifiers remain competitive
with each other 35 we increase the pool. The subplot on the right
of Fignre 7 shows the trend of memory consumption by the dif-
ferent algorithms as we Increase the number of sabjects incoded.
Compared to standard KMN, the Increase in memory consamp-
tion & much slower (sub linear) for the C5L algorithm, with the
KNMN-on-leaves variant of the (5L algorithm growing very slowly.

Finally, in Fignre 8, we examine the growth in the average recog-
nition time with Increxsing pool size. The costs of adding data
cause the recognition tme to grow for the KNN algorithm more
than for either variant of the C5L algorithm (either tree descent
or EMMN-on-leaves versions).
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C5L variants aschibit significantly lower memary wsage than tha other
‘wo methods. (Botiom ket Time: required 1o trein classifers ICSL v
SWM; tha twao CSL waniants are tested diferently but tmined identically;
KRN algonthms ane not trainedl. CEL requires rosghly an order of
magrituda less ima to train than 5k, Bothomn right! Average time to
reoogriza @ naw nput after traiming. The y @xis i@ kogarithmic soela)
showes clearly that CSL with troa desmont cutperiorms the ofter
okemmifiars by an order of magnibeds.

Between these two CSL algorithm variants, the katter exhibits
some modest time growth as data 15 added, whereas the former
(tree descent) version of CSL exhibits no significant increase In
recognition time whatsoever a5 more data b added to the task.
It 1s notable that the reason for this is that the tree depth has
not Increased with Increxsing size of the dataset; that is, 25 more
data is added, the leamed CSL tree arrives at the ability to sac-
cessflly dassify the data early on, and adding new data does
not require the method to add more to the tree. Interestingly,
the trees become better balanced as we Increase the mamber of
snbjects, but their sizes do not increase. The resnlts suggest that
the CSL algorithm is better suited to scale to extremely large

data sets than either of the competing standard 5VM or KNN
methods.

6. ANALYSES AND EXTENSIONS

E1.  ALEORITHM COMPLEXITY

When k-means is used for chustering, the time complexity for
each partitioning & O{MtK), where N & the number of samples,
K 15 the number of partitions and t 15 the number of fera-
tions. If we fix ¢ to be a constant (by putting an upper Hmit
on it), then each split takes ((NK). 5ince we also put a boand
on K {Kms). we can assume that each split is O{N). Farther
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analysis 1s needed on the total mumber of paths and their con-
tribution to runtime. The maximum amount of memory needed
Is fior the first onsupervised partitioning. This is proportional
to O{NK). When we have small K, the amount of memory 1s
directly proportional to the number of data elements being used
In training.

As mentioned earlier, the algorithm is intrinsically highly par-
allel. After every unsupervised partitioning, each of the partitions
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AGURE 7| [Laft) Acouracy of dassifier predictions on sphit tests. larger tan 21 Aight Tradis tha trend of oorsumption with
The aoouracy of the diffarent dgorithms remain compatitve = we mouasing s of the subjoot podl for the dassfiors. KENN's mamaony
incrazsa tha subjpot podl. (Tha mamony wmsge by e LibS0 usaga grows lincarly, whiereas the C5L variznis grow at o kowar rat,
implornantation of VM wes too lrge for testing on subject pooks ikstrating thair scbbiity
can be farther treated in parallel. However, in the experiments
o reparted here, we have as yet made no attempt to parallelize the
oode, seeling instead to compare the algorithm directly against
e o current standard 5VM implementations.
" / 62 COMPARISON WITH DTHER HIERARCHICAL LEARNING
B TECHNIQUES
) e The strocture of the algorithm makes It very simdlar to CART (and
i ol in particalar, decision treess Buntine, 1992) since both families of
E 08T algorithms partition the non-inear input space into discontimions
']j:-.: I a5l reglons such that the individual sub regions themselves provide
effective class boundaries. However, there are severa] significant
o1 :_,_...a-"fr""f. differences.
a s i —te » Perhaps the most substantial differemce 1s that decision trees
L ? 7 1 5 nse the labels of the data to perform splits, wherezs the C5L
Numker of ssbjects algorithm partitions based on unsupervised similarity.
» The C5L algorithm splits in 2 multivariate fashion, taking into
- <ot recuired For st account all the dimensions of the data samples, as opposed
AGURE g | Avaraga recognition U 3 sampla. a5
= funstion of the ot of data rained, fim L kNN to decision trees where most often, a single dimension whidh
finzarly. CEL with Mmmmmaﬂm.mmnwu L results in the largest demixing of the data, is wsed to make splits.
with traa descent hardly shows: ary incrassa, suggesting its sokbilty to The path from the root to a leaf in a decision tree is 2 con-
satrermedy lerge datasats. Junction of local decistons on feature vahies and as a result

is prone to over fitting. As discossed before, the CSL tends to
exhibit little overfitting, and we can understand why this is the
case (see Discussion In the Simplified Algorithm section ear-
lier). The leaves can be treated independently of the rest of
the tree and KNN can be used on them to obtain the class
predictions.

» Decision trees are by nature 2 2 dass discriminative approach
{multiclass problems can be handled using binary decision trees:
Lee and Oh, 2003) whereas the C5L algorithm Is 2 natoral
multiclass generative algorithm
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Most importantly, the goals of these systems differ. The primary
goal of the C5L algorithm Is to uncover natoral strocture within the
data. The fact that the label-based impurity of classes is reduced,
resulting In the ability to classify labeled data, falls ont as a (very
vahable) side effect of the procedure. The C5SL algorithm thas will
carry ont 2 range of additional tasks, beyond sopervised classifi-
cation, that nse deeper analysis of the underlying structure of the
data, not apparent through supervised labeling alone.

63 DISCOVERY OF STRUCTURE

For purposes of this paper we have focnsed solely on the classifica-
tion abilities of the algorithm, though the algorithm can perform
many other tasks ontside the porview of classification. Here we
‘will briefly cover twao (lnstrative additional abilities: (1) uncover-
Ing secondary structure of data, and (1) localization of objects
‘within images.

631  Haxby deteset

Once 2 model 15 trained, for each training sample if we do hier-
archical descent and aggregate the posterior probabilities of the
nodes along the path, we get a representation for the sample.
When we dio an agglomerative clnstering on that representation, we
uncover secondary stroctore suggesting meta classes ooonrring In

the dataset. Figmre 9 captures the ontpat of sach an agglomerative

clustering for the recordings of one subject (51). Here we can see
extensive structure relations among the responses to varkons pic-
tures; perhaps most prominent s a clear separation of the data
Into animate and inanimate classes. The tree suggests the struc-
tare of information that s present in the nenroimaging dats; the
smijects’ brain responses distinguish among the different types of
pictres that they viewed. Related resnlts were shown by Hanson
et al. (2004); these were arrived at by analysis of the hidden nodie
activity of a back propagation network trained on the same data.
In comtrast, it is worth noting that the C5L classther obtains this
structure 25 2 natural by produoct of the tree-bullding process.

612  image localiration

A task quite outside the realm of supervised dassification is
that of localizing, Le., finding an object of interest within an
Image. This txsk is nseful to 1lhastrate additional capabilities of the
algorithm beyond just classification, making wse of the internal
representations it constrcts.

Wi assume for this example that the chastering component of
the algorithm is carried out by a generative method such as PLSA
(Siwic et al., 2005); we then can assume that the features specific
to the object class will contribute to the way In which an image
becomes chistered, and that those features will contribate more
than will random background festures in the image.

ne
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Figure 10 shows an example of localization of a face within  clustering and for determining the cluster membership of 2 previ-
an image. The initial task was to classify images of faces, cars, ously unseen Image x For every closter z we can obtain the pos-
maotorcydes, and alrplanes (from Caltech 4). PLSA was used for  terior probability p{zlx, w), for every feature w In the vocabulary.

AGURE 1 | An illustration of ohject localization on an image from Points in gresn indicate fesfora soores above thrashold and those in red
Caltech-756. (A) The ongiral image. (B-E) Positive, nautra, and negative it balow thrashold soores. Moto that sithough groen diots oo in
featuras igroan;, blus, rod, respoctielyl chown at lovels 1 throagh 4 dlong the  multipla regions, the presanog: of red dots Incgattve fashures) i Emitad only
path in tha CEL trea. {F) A thrasholded map of tha aggregate faure soes. 1o regions outsida tha fecs region.
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Thus, we can test all features in the image to see which ones max-
Imize the posterior, Indicating strong Influence on the eventual
closter membership. The location of those featares can then be
used to Identify the vicinity of the object.

As the path from root to leaf in the CSL hierarchy is traversed
fora particular test image, the posterior at a given node determines
the contribution of the featore to the branch selected. Let y be the
final object kabel prediction for image x

Consider featare f; from the vocsbulary. AL any given node at
height 1 along the path leading to prediction of ¥ for x, let d be
the branch predicted by feature f, 1.e., among all branches at node
I the posterior for that branch is highest for that feature. d 1s
actnally a set of labels that can be reached at varions leaves using
H}ebt:ndlmdﬁmﬂ}'lelﬂlewiﬂbrmukm:tlheﬂ

At bevel I, f, can be classified as paositive If 1{d] = B'), nentral
if 1{d # B and 1(y & d'), and finally, negative if 1(d’ # b') and
Ly £ d}). The overall score for fi is 2 weighted sum 5; of all the
scones (negative featnres getting 2 negative score) along the path.
Since we know the locations of the features, we can transfer the
scores to actheal locations on the iImages (moge than one location
may map to the same featre in the vocabalary). When a simple
threshold 1s applied, we get the map seen In the final image. The
‘window most likely to contain the object can then be obtained by
optimization of the scores on the map using branch and boand
techniques.

7. COMNCLUSION

We have introduced a novel, biologically derived algorithm that
carries out similarity-based hierarchical chastering combined with
simple matching, thus determining when nodes In the tree are to
be meratively deepened. The chustering mechanism 15 2 reduced
subset of published hypotheses of thalimocortical function: the
match/mismatch operation is 2 reduced subset of proposed basal
manglia operation; both are described In Granger (2006). The
resulting algorithm performs a range of tasks, Inclading 1dentify-
Ing niztural undertying structure among object in the dataset: these
abilities of the algorithm confer a range of application capabilities
beyond traditional classifiers. In the present paper we described
In dietall just one clrcumscribed behavior of the algorithme its
ability to nse its combination of nnsupervised clostering and rein-
forcement to carry out the task of supervised dasstfication. The
experiments reported here soggest the dgorithm’s performance
Is comparable to that of 5¥Ms on this task, yet requires only a
fraction of the resources of SWM or KNN methods.

It 1s worth briefly noting that the intent of the research
described here has not been to design novel algorithms, bat rather
to educe algorithms that may be at play in brain circoitry. The
two brain structores referenced here, neocortex and basal gan-
glia, when studied In isolation, have given rise to hypothestwed
operations of hierarchical dustering and of reinforcement learn-
Ing, respectively (eg.. Sutton and Barto, 1998; Rodriguez et al,
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1 Introduction

Object categorization requires recognizing the classes of objects appearing in an
input photo. Rather than performing classification of the entire image as a whaole,
object class recognition systems often operate by decomposing the photo into dif
ferent regions corresponding to the objects present in the scene. Treating object
localization and recognition jointly allows such methods to be more robust to clot-
ter, variations in backgrounds, as well as presence of multiple objects.

‘We can distinguish several methodologies for object recognition and localina-
tion on the basis of the amount of human sopervision needed during training.
‘When the training images are mannally segmented into semantic regions, object
localization can be formulated as the task of densely matching regions of the input
photo to the manually annotated segments of similar images in the database [19].
In order to achieve good results, these methods require very large collections of
annotated images s0 as to maximize the chance of a close image match in the
database. However, due to the cost of collecting pixel-labels, such datasets are
extremely time-consuming to generate and difficult to label accurately.

A second methodology involves the use of datasets where only the object of
interest is manually segmented in the training images. Typically, recognition and
localization is then achieved using a combination of bottom-up segmentation and
top down classifleation ([5],[18],[28),[30]). But these methods are computationally
expensive to run and, again, the requirement for detailed segmentation in the
training set is far too onerous.

An efficient alternative is object detection([7],[8]), which involves sliding a sub-
window classifler exhaustively over all rectangular regions of the test image in order
to robustly localize the box that is most likely to contain the object. This brube-
force evaluation can be made very efficient by using a branch and bound strategy
[16] which allows to rapidly remove from consideration a large portion of regions.
These algorithms normally require the object to be delineated using a bounding
bixx in the training dataset, which is easier to generate compared to full segmen-
tation. However, even this form of labeling is expensive to acquire and effectively
restricts the size of the training set. Furthermore, the sizes and locations of the
bounding bexes are typically chosen arbitrarily by the labeler and are consequently
unlikely to be optimal for recognition.

‘When images have labels indicating the objects present in them but no local-
ity information for the objects, semi supervised methods can be applied to learn
automatically the correspondences between image regions and the labels of the im-
age. Most methods in this genre use bottom-up segmentation as a preprocessing
to produce candidate segments, and then perform top down learning on the seg-
ments {[10],[2],[6]}. However the main weakness in such methods is relying on the
ill defined task of bottom-up segmentation (based on low-level visual cues such as
adges and texture) to segment images such that objects or semantically-coberent
regions are represented by a single segment. Thus, such approaches typically yield
poor classification accuracy. Recently, Nguyen et al [23] and Deselaers et al[9]
hawe proposed weakly-supervised object localization methods avoiding the need of
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bottom-up segmentation: the idea of thess methods i5 to simultaneously localize
discriminative subwindows in the training images and to learn a classifler to rec-
opnize such regions. However, even such methods require supervision in terms of
clazs labals.

In this paper we contrast the traditional methodologies for object localization
and recognition outlined above, by presenting a fully-unsupervised method which
completely eliminates the need for time-consuming and suboptimal uman label-
ing. The intuition behind our approach is that objects can be viewed a5 recurring
foreground patterns appearing as coherent image regions. Thus, we can formulate
object discovery as the task of partitioning an unlabeled collection of images into
K subsets (clusters), such that all images within each subset share a similar fore-
groamd. In order to obtain & method scalable to large collections and many classes,
we adopt a foreground mask-based representation of objects, which enables fast
localiation given the object model. Specifically, we represent the object in an
image =5 a histogram of quantized local features occurring in the enclosing fore-
ground mask. We view each object instance as a random variable drawn from an
unknown distribution common to all instances of that object class. This common
distribartion assumption constrains all foreground histograms of an object class to
represent subtle varations around a prototypical average histogram_ Based omn this
assumption, our approach poses object discovery as a maximum likelihood estima-
tion problem, to be optimized over the entire collection of unlabeled images. We
present a method that maximizes this objective by simultanecusly solving for the
histogram model parameters of the object classes, detecting the object instances of
each class in the unlabeled images, and performing a soft semantic clustering of im-
ages in the data sst. In the next section we review prior methods for unsupervised
object discovery and discuss their relation to our approach.

2 Related work

Class-generic methods for object discovery, such as [1] and [14], attempt to dis-
cover image regions which are strong candidates for eontaining objets in them.
These methods operate on individual images in a purely bottom up fashion. How-
aver, the bottom up notion of “object’'ness is ill-defined and hence methods which
can discover objects by using a collection of images by determining statistically
repccrring image fragments are more likely to succeed at the task

Lee and Grauman [17] have proposed an approach to automatically localize
foregroond features from a collection of unlabaled images. By learning the “sig-
nificance’ weights of semi-local features iteratively through image grouping, their
method determines for each image which features are most relevant, given the
image content in the remainder of the collection. While this work suoccessfully
demonstrates that a mutual reinforcement of object-level and feature-level simi-
larity improves unsupervised image clustering, there is no clear way of translating
feature weights into foreground localization and object extents. Furthermore, it
performs clustering from pairwise image matches and therefore the computational
cost at each iteration is cubic in mumber of images. Finally, the algorithm alter-
nates betwesn image clustering and updating the foreground weights without a
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unifying formal objective and thus its convergence properties are unclear.

Various semantic topic models ([11],[27], [12],[15], [9]) have been have proposed
for similar tasks where the location of the object is treated oz a latent variable
to be estimated. However, most of these methods are not fully unsupervised and
often resort to an expensive sliding window mechanism for object discovery with
unknown costs for detection.

Our work is inspired by the approach of Russell et al [24], who extend their
earlier waork [26] and propose a fully-unsupervised algorithm to discover objects
and associated segments from a large collection of images. Multiple sepmenta-
tions are performed for each image by varying the parameters of a segmentation
method. The key assumption is that each object instance is correctly segmentad
(a5 a single contiguous segment) at least onee through multiple ssgmentation and
therefore the correct sepments cormesponding to object classes occur more often
than random background. This suggests that the features of cormect segments form
object-speciflc coherent clusters discoverable using latent topic models from text
analys=is. Although the algorithm is shown to be able to discover many different
objects, it still suffers from its dependence on bottom-up segmentation to come up
with a single segment encapsulating the object, which is ill-posed particularly in
the case of unsupervised datasets since often it is necessary to know the category
of the object in order to reliably segment it from the scense. Their goal is different
from ours in that their method does not prescribe a way to cluster the images or
determine which regions in the images correspond to image foregrounds. Never-
theless, in the experiments we consider adaptations of their method to our task
for a quantitative comparison.

In contrast, we propose a generative model of foreground formation that en-
ables simultaneous image clustering and foreground localization via masximum like-
lihood estimation. Unlike [24), our approach treats each image as & composition of
foreground and backgroumd where the foregroond is explained by a single model
shared with other images and the background is image-speciflc and hence not
madeled. We treat the foreground mask as a parameter to be estimated as part of
the likelihood optimization. We demonstrate that this leads to better localization
and image clustering. Apart from the proposed unifled framework of maximuom
likelihood estimation for the task, the main contributions of this paper are the
development of two novel methods for efficient localization of object foregrounds
in images. In the first method, the foreground is encapsulated by a rectangular
bounding box thus obviating the need for bottom-up segpmentation. The second
method does rely on bottom-up segmentation. However, the segments generated
are assumed to be nothing more than “super-pixels’. In particular, we do not as
sume that the foreground is captured by a single ssgment. Hence, we overcome
maost of the drawbacks of previous methods which tend to generalize poorly due to
their reliance on the assumption that bottom-up segmentation will likely produce
object instance segments consistently across images belonging to the same class.
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Fig. 1: Our generative model of image formation: imsge =, is obtained by flrst
drawing its object class (I.); then the appesrance of the object inside the fore-
ground location (xn ) is generated from a distritution (#] ) commeon to all objecta
instances of that claaa.TtetackgIauuﬂ.mcdel[ﬂfjisasamedmchangewith
evary image.

3 Generative model for unsupervised object discovery

‘We now describe our proposed generative model for unsupervised object discovery.
We assume we are given &8 input a collection of NV unlabeled images zq,...,2m,
with each image containing one of K objects. Our objective is twofold: to sep-
arata the images into A digjoint subssts (clusters) corresponding to the K ob-
ject classes and to localize the object within each image. We dencte with =
the unknown foreground mask enclosing the foreground object of image z,. We
represent the foreground region ., of image z, by computing the un-normalized
histogram hizm, =) € B% of the visual words (ie., quantized local visual fes-
tures) ocourning inside ®.: here W represeniz the mumber of unique words in
the visual codebook, which, as usual, is learned during an offline stage from
training images. We assume that the foreground histograms of images belong-
ing to the k-th object class are generated from a common model deflned by
parameters & . Specifically, let [, £ {1;... K} denote the unknown cluster la-
bel of image z., which we assime to be drawn from a Multinomial distribution
with parameters # = {¥i,...,7x }. Then, we model the foraground histogram
hizn,Ts) a8 a random variable drawn from a Gaussian distribution with parame-
ters 87 = [, Do}, iey hza, ) ~ N (e, Do, ). In ordar to 1educe the number
of parameters io be estimated, we assume the covarianee E, of each cluster k
to be diagonal: Xy = di;ag[ﬁn,...,hwj‘i. Finally, each image is asmimed to
hswe its own independent background model defined by parsmeters 82, For our
ohjective of object discovery, the background parameters can be left unresolved.
The complets generative model is summarize graphically in Figure 1. We pro-
pose to maximize the likelihood of this modsal by marginalizing over the cluster
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labels, which we treat as hidden variables. In other words, our objective is to fAnd
paramatars § = {#, 7} and foreground regions © = {zy,...,T,} maximiing

N N K
p(z|z. 81p(z) = [] plzntn, B)p(2a) = [[ 3 (zn.ln = K2a,B)plz) (1)
nm=1

n=1g=1

where p(T.) is a prior penalzing unlikely confipurations of the foreground mask.

4 Optimization

‘We can maximize the proposed penalized likelihood via an Expectation Maximiza-
tion (EM) algorithm alternating between estimating the distribution over the clos-
ter labels [, and solving for the foreground models and locations. Next, we show
how to perform each of these steps and demonstrate that our modeling choices
lead to efficient localization of the object regions given the foreground parameters
8. The penalzed complete log-likelihood of our model is given by:

.}
L=log H PlZn, In|Tn, 0)p(Ea)

n=1

N
=log 1-_[ Plznlln, Tn, O @) p(zn)

n=1

N
= 3 logplzalZa, lu, 6) + log p(l|6) + log p(z.) i2)

n=1

The E-step of the algorithm involves caleulating the latent posterior distribution
Tk = Plln = E|Zn,Tn,¥) given the current estimates for 8 and x. It can be seen
that this reduces to an evaluation of the following equation:

Yok = T (A Zn, Ta ) Be. B}
EE:i IE"N[h{z’n:Tn};p'k’: J""‘I:"::I

3

The M-step requires maximizing the expected log-likelihood = £(#) =, with re-
spect to @ and . We begin by writing the expected log likelihoosd:

N K
€L33=3 Y Tk OEN (R(2Zn, Tn); e, Ti)

n=1 k=1
N K N

+ 3 D YT+ Y logp(za) + const ()
=1 k—1 n=1
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The update steps for parameters 8 can be obtained by setting the respective deriva-
tives to zero. This leads to the following rules:

e & Z Tnk (5)
n._!
1 )
B — m%’l‘.l—h[% +Tn) (6)
N
prape Fg% 5 Tok{1h(zm, 2ol — [l )
—n=l

where [a].. denotes the w-th entry of a vector a.
In the M-step we also nead to update the estimate of the foreground mask =,

by solving the following optimzation:

K
argmax < £ o= agmax {logp(Za) + 3 Tk EN (A2, Tn ) fe. Te)}
- - k=1

= argmax{logp(za) — Z Tk z Apw([h(zn, Ta )l — [lw)’} (8)

k=1 w=1
‘We now show that this objective can be rewritten in a form that leads to efi-
cl.entuptlmanun Let Ay = [Agy,-- J‘*wrr ERY o= hr..iJLl, ,..."rl,ﬂ-lﬂ-fr £

BYE b=, ..,p,c]"' £ B"'¥  and finally let us denate with hizn) the vector
containing K copies of fa(z., .'I.'n]I, ie, fzn) = [BZn, )Ty HEZn, 2] T E
B" ¥ Then, we can rewrite the ohjective of eq. 8 equivalently as follows:

HwW

agmax < £ > = arg max {logplzn) - 3 olfhiza)l; - @) @
- Fn =1

‘We next introduce methods to optimize this objective efflciently.

4.1 Imapge foregrounds as rectangular bounding booes

A popular way for circumscribing an object in an image is by using rectangular
bounding boxes. Traditionally for the object detection task, the bounding boxes are
determined using an expensive sliding window method ([7], [8]). However, recently
Lampert et al. [16] have introduced a branch and bound optimization procedure
to localze bounding baxes efficiently. In our first proposed approach for deter-
mining foregroumd loeality, we treat the foreground of each image as a contiguous
rectangular region which is represented by the wariable r, € A" Here X indicates
the space of all rectangular subwindows. The foreground content k(z,, 2. ) is just
a histogram of all features that occur within the rectangle.
Consider eq. 9 note that the second term in this objective is a weighted Ew-
clidean distance betwesn [ and the histogram A(r.) computed from the wvisuwal
words in subwindow £,,. For such term, we can define a quality lower bound fune-
tion over sets of subwindows as described by Lampert et al [16]. For simplicity,
let us demote |h|:::..]]_T and [1]; as hiz); and p, respectively. Let ™™ and r™=
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be the smallest and larpest rectangles in candidate sst X' We observe that the
value of each histogram bin over a s=t of rectangles A" can be bounded from below
and from abowve by the mumber of features with corresponding cluster index that
fall into 2™ and ™" respectively. We denote these bounds by kiz); andﬁ{:]l:
respectively. Each summand can now be bounded from below by

[l "T_Tmffh - ;‘I'_] }2 pr'_] = EII}J
eyihiz); — )t =1 0 if hir); < py < hir); (10

oy(fi(z); — iy =),

In our implementation, we model the first term, p{z,) a5 a simple 20 Gaussian
ower the relative width and height of the foreground subwindow , measured as frac-
tions of the image width and height. Therefore, the bound over sets of subwindows
can be trivially defined for log p{z, ). This implies that our complete objective can
now be globally optimized ower x,. < X using the branch and bound method for
efficient subwindow search of [16).

4.2 Image foregrounds as a set of super pixels

Modeling foregrounds =s rectangular regions forees foregrounds to be rigid and
contiguwous. In some cases, this results in the inclusion of random background clut-
ter as part of the window which influences the foreground object model. This is
undesirable and is particularly troublesome for highly eontoured objects and ob-
ject classes with large pose variance. To address this concern, we proposs a second
method of representing foregrounds. Here, each image z,, undergoes bottom-up
sapmentation once at the start of the el ing procedure and is split into a num-
ber of appearancebased segments {21, 52 &M}, The number of segments, M | is
large enough for the image to be deemed as over segmentad. These sagments are
called supar pixels. Thus, the goal of finding the foreground becomes equivalent to
finding which superpixels may be part of the foreground. An important property
of considering an image as a collection of super pixels is that unlike [24],[10] and
several other approaches, we do not require that the entire foreground object re-
gion be captured by a single bottom-up segment. Instead we treat the foreground
to be compossd of a gronp of super pixeals.

Formally, the foreground mask . from flgure 1 is described by a sequence
of variables {z3 r2. 2™} We treat each r% as a variable such that =%, € [0, 1],
with the interpretation that higher walues imply that the super pixel £, is to be
part of the foreground region and a valoe close to 0 implies that sn is assigned
as part of the background. Therefore the foreground image content is deflned as
h{zn) = ¥, rnh(rn), where h{r}) is the histogram of features occorring in the
super pixel g . Using this, we recast eq. 9 as

argmax < £ =, = argmin{ 3 (zf — 2214
= " faeEw
W M

3 o3 thhizh), — 10" {11)

=L =1
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subject oz =z, £ [0,1], B :;% £ [a, (12

where Sy is the set of all pairs of neighboring segments' in image z_, P is
the number of pixels in segment &, and F, = 37, F;, and @, b are scalar values
constraining the size of object foregrounds (in our experiments we set a = 0025 b=
0.75). The fimst term in eq. 11 represents our choice of prior p{z,). This term
penalizes conflgurations where neighboring segments have widely differing values
and thus forces foreground segments to be localized together. It can be seen that
the eq. 11 is a simple comwvex optimization objective when 2, is allowed to be a real
value and hence can be minimized very efficiently using quadratic programming.

5 Implementation details
5.1 Image representation

Our representation is based on histograms of quantized SIFT features [20]. We
experimented with both SIFT descriptors caleulated densely over the entire im-
age and also those produwced using an interest point detector. Similarly to what
reparted by the anthors in [17], we obtained better results using dense descriptors
caleulated at every pixel in the image. Thus, here we present experiments based
only on dense features. As per common practice, we quantize the SIFT deseriptors
using a vocabulary of visual words penerated by running k-means on a set of SIFT
deseriptors obtained from the collection of input images. We then learn a codebook
of LI}VA topics [4] learned over the quantimed SIFT features via Gibbs Sampling
[13]. Therefore, each image is viewed as a document of visual words generated from
a mixture of topics and the final histogram is produced by assigning each quan-
tized SIFT descriptor to its most likely topic. In our experiments we determined
that histograms over a small LDA codebook provided the most consistent resolts.

5.2 Initialization

The method of initialization for unsupervised clustering often has a large impact
on the quality of the final results. The parameters to initialize in our model are:
mixture coefflcients (w,), histogram means (p,) and vardances (X.), and fore-
ground masks for all images (2. ).

We have evaluated bottom up, class-generic object detectors such as [1] for suit-
ability for getting an initial estimate of image foregrounds. However, in practice
such methods are unreliable. Therefore, we have developed a novel approach to
initialize object foreground locations. We essentially perform a pairwise foreground
matching for all images in the dataset. For each pair of images, we find the two
foregroond masks that minimize the L1-norm distance betwesn histograms com-
puted from these masks. This can be viewed as a form of co-ssgmentation [23],
aimed at finding the most similar subwindows in the two images. Specifically, for

! Mot that, since the segments do not change sfter the initisl imsge segmentation, neither
do meighborhiood relaticnship betwean segments.
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where Sy is the set of all pairs of neighboring segments' in image z_, P is
the number of pixels in segment &, and F, = 37, F;, and @, b are scalar values
constraining the size of object foregrounds (in our experiments we set a = 0025 b=
0.75). The fimst term in eq. 11 represents our choice of prior p{z,). This term
penalizes conflgurations where neighboring segments have widely differing values
and thus forces foreground segments to be localized together. It can be seen that
the eq. 11 is a simple comwvex optimization objective when 2, is allowed to be a real
value and hence can be minimized very efficiently using quadratic programming.

5 Implementation details
5.1 Image representation

Our representation is based on histograms of quantized SIFT features [20]. We
experimented with both SIFT descriptors caleulated densely over the entire im-
age and also those produwced using an interest point detector. Similarly to what
reparted by the anthors in [17], we obtained better results using dense descriptors
caleulated at every pixel in the image. Thus, here we present experiments based
only on dense features. As per common practice, we quantize the SIFT deseriptors
using a vocabulary of visual words penerated by running k-means on a set of SIFT
deseriptors obtained from the collection of input images. We then learn a codebook
of LI}VA topics [4] learned over the quantimed SIFT features via Gibbs Sampling
[13]. Therefore, each image is viewed as a document of visual words generated from
a mixture of topics and the final histogram is produced by assigning each quan-
tized SIFT descriptor to its most likely topic. In our experiments we determined
that histograms over a small LDA codebook provided the most consistent resolts.

5.2 Initialization

The method of initialization for unsupervised clustering often has a large impact
on the quality of the final results. The parameters to initialize in our model are:
mixture coefflcients (w,), histogram means (p,) and vardances (X.), and fore-
ground masks for all images (2. ).

We have evaluated bottom up, class-generic object detectors such as [1] for suit-
ability for getting an initial estimate of image foregrounds. However, in practice
such methods are unreliable. Therefore, we have developed a novel approach to
initialize object foreground locations. We essentially perform a pairwise foreground
matching for all images in the dataset. For each pair of images, we find the two
foregroond masks that minimize the L1-norm distance betwesn histograms com-
puted from these masks. This can be viewed as a form of co-ssgmentation [23],
aimed at finding the most similar subwindows in the two images. Specifically, for

! Mot that, since the segments do not change sfter the initisl imsge segmentation, neither
do meighborhiood relaticnship betwean segments.
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each pair of images (z,, 2;), we find the pair of subwindows (2,;,2,,) € &= X that
minimizes the following objective:

[z, ey} — Blzy. T3l |2 — CllR{za, Tog) + Biz;, T30}]2 (13)

where ||.||1 denotes the L1-norm and & is a hyperparameter trading off the objec-
tives of finding similar histograms and choosing large subwindows (in our imple-
mentation & is set to 0.2). It is easy to see that this objective can be minimimed
using a simple variant of the branch and bound method described in [16]. At the
end of this pairwise matching process, for each image z,, we get N — 1 candi-
date foreground masks {T; ;4. From this set, we pick the 3rd largest window by
area. The imtuition behind this choice is that close matches will resolt in larger
windows and that the largest windows probably contain background regions due
to matching to near-duplicates. The same initial windows were used for both the
foreground localation methods deseribed in this paper. While it is true that the
cost of initialization is quadratic in the mumber of images, we stress that its a one
time cost unlike most competing methods (such as [17]), where each iteration has
a quadratic cost. Onoe initialized, the iterations of our EM algorithm have linear
cost.

For initializing the mixture parameters, we tried a variation of careful seeding
[2] which was robust against outliers.

8 Experimental results

There are very few published quantitative evaluations on the task of unsupervised
clustering and foreground localization. In this paper, we benchmark the perfor-
mance of our proposed method principally against the results published in [17]
(FF), which reports on the same task. We do not compare directly to the methods
described in [29) as these algorithms do not consider the problem of object localia-
tion and instead perform image clustering merely based on global features calew-
lated from the entire image. Instead we include as baselines a mixture of gaussians
maodel applied to whole images (GMM-whole) as well as ground truth boumding
baxes (GMM-GT), to show the benefits provided by our foreground localization
methods in the clustering results. We have also applied the gaussian mixture model
on bounding boxes derived using the bottom up method described in 1) (GMM-
Obj). Finally, we have interpreted the method described in [24] (Multi-Seg) and
applied it to our task.

In [17], the authors have evaluated their method on the MERC-v1 datasat and
two subsets (a 4-class and 2 10-class collection) of the Caltech 101 dataset. Please
refar to that paper for details on the datasets. Here we report our findings using
exactly the same experimental setup and sets of images. For all datasets, we pick
the mumber of foreground clusters, K, to be equal to the number of classes. We
performed all experiments using a codebook of 50 LDA topics computed from
500 SIFT words. For the segment selection method of foreground localization, we
generate 20 bottom-up ssgments for every image using an implementation of nor-
malized cuts [25).
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Fig. 2 The quality of image clustering in terms of the F-Measure metric for the
three datasets. The compared methods are GMM applied to foll images (GMM-
‘Whaole), ground truth subwindows (GMM-GT) and object boxes derived using
[1] {GMM-0bj). The plots also inclode results for Multi-Seg[24], FF[17], and our
proposed algorithm of joint clustering and localzation (subwindow discovery as
well as segment salaction)

6.1 Quality of image clustering

‘We begin by evaluating the quality of clustering as F-measure metric with respect
to the ground truth class labels: F = 5 %‘mr_,ﬁ"{:,j}, where I, is the number
of images belonging to class 1, F'(t,7) = HSEEA and Pis,g) and R(s,7)
denote precision and recall, respectively, measured class  and cluster j. The
F-measure is & good index of cluster purity with high values indicating that each
cluster contains objects predominantly from one class. Figure 2 summarizes the
results obtained on all three data sets

The standard Ganssian mixture model (GMM) has been evaluated in different
sattings, one of them using whole images (GMM-whole). For the caltech subsets
where ground tmuth is available in the form of bounding baxes, we have also tested
the method using only the image content within the ground truth foreground sub-
windows (GMM-WGT). The generic object detector of [1] provides for each image,
the bounding bax with the highest probability of cormresponding to an object. The
graphs show the result of applying GMM on the image content lying within these
bixxes as well. From this Figure we see that our approach greatly outperforms
GMM using full images (with the segment selection procedure for foreground lo-
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caliation marginally outperforming subwindow discovery method). Farthermore,
somewhat surprisingly, our approach also does much better than clustering applied
to the foreground pround truth subwindows. We specalate that this is because the
manual annotations are subjective and unreliable. Particularly in o asses with high
degree of variance, the human-selected baces might work against the clustering at-
tempt as the content expressed within the foreground regions of images within the
same class might not be similar. On the other hand, unsurprisingly, the results of
applying GMM-0bj are poor since determining objects from a single still image
is an il defilned task

However, we chiefly compare against the results of the “foreground focus™ (FF)
method deseribed in[17) and the moltiple segmentations (Multi-Seg) method of
[24]. Significantly, our system also cutperforms the results reported in [17] despite
their alporithm using a sophisticated semi-local representation encoding relative
location of features in spatial neighborhoods. The difference in performance is
especially noticeable on the most challenging MERC-v1 data set, which contains
objects at different scales and in different positions within the image.

6.2 Foreground initialization

Dintasat | Whale Image | Object Box | Coteg Box
L

Caltoch d [ LE:IE
Caltoch- 100 0.4 OLE45 LLA#
MERCv1 0T DL6TE LBTT

Table 1: FMeasure for different initialization methods

We hawe evaluated seweral different ways of initializing the foreground masks
for the images. In particular, we report for 3 different methods: Initializing masks
contain an object as determined by a class generic object detector [1] and finally
initializing foregrounds using the pairwise image cosepmentation method described
in previous section. A summary of the results in terms of clustering quality is given
in Table &.2. From the table it is clear that the cosegementation approach, despite
the high cost provides the best results consistently.

6.3 Foreground Localization

We now proceed to evaluate our approach in terms of object localEation accu-
racy. In [17], the authors determine the quality of the foreground localization by
examining the normalized sum of the weights inside the ground truth foreground.
‘While their perfirmance on this metric does indicate that the foreground features
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Fig. 3: Average localization scores achieved by our methods on all images from
asch ground truth elass in the 4-class and the 10-class subsets of Caltech101. We
also show the localization scores achieved by Multi-Seg. Please see text for more

E

get higher weight than background features, there is no clear way of determin-
ing the sctual locality and extent of the foregrounds in the images. Farthermore,
with their metric, it is possible to get a high score by having just a few very

ates a natural solution to this requirement in the form of bounding baxes for the
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foreground, when the localization method is subwindow discovery, and foreground
sarments , when the localization method is segment selection. We measure the
quality of the foreground localization by using a metric commonly used in object
detection: J. = area(z. =57 )forea(r, | £57) where £57 is the ground truth
for the object in image n. For subwindow discovery localization method, we use
the bounding bax ground truth provided for the images in Caltech 101 and for
sagment selection method, we use the full obhject contour ground truth provided.
Figure 3 shows the localization scores achieved with our method on all images of
the d-class and the 10-clxss subsets of Caltech101. We also include the localimation
soores achieved by [24). It is clear that the foreground localization by the segment
salection method is superior to subwindow discovery, howewver, it does not make a
signiflcant difference in terms of F-measure scores. We speculate that this may be
due to the restricted nature of the datasat with highly correlated background con-
tent appearing in the discovered subwindows which aid in dustering foregrounds
correctly. While studying the scores, we want to emphasize that these are ealew-
lated with respect to the mamually annotated groond truth. As we have already
seen in the case of bounding bawes, they are somewhat arbitrary. In our method,
foreground detection is optimized for image clustering. So it is reasonable to get
foreground which are inconsistent with the ground truth, but nevertheless play a
role in improving image clustering,

A brief note on our interpretation of the methods in [24]: We point out that
this method was designed for a different task: it does not explicitly cluster the
images or specify which sagments are foregrounds. Nevertheless, we tried adapting
thiz method towork on our task in two different ways: (a) We ran the eode of [24]:
for each image I, multiple sepmentations were computed and a topic model was
fit to the segments. Cluster membership was determined as the topic (T) of the
segment (S, ) with the smallest KL divergence to its topic. Then, to localize the
foreground, we selected all segments having Ty as the most probable topie from
the segmentation comtaining Sacee- (b) We used the super-pixels of our method
as input to [24] and then applied the procedure described in (a) for clustering
and localization (we also tried using the most frequently oecurring topic as duster
membership eriterion, with no improvement in performance). We have included
the resolis for (a) in the plots in Figures 2 and 3. The results for (b) are very
similar. In short, both the cases yielded much lower seeuracy than our approach.

Finally, our algorithms are quite fast thanks to the very efficient foreground lo-
calization methods. For instanee, on Caltach 4 subset, the EM approach based on
branch-and-bound completes all its iterations in 300 seconds whereas the segment-
salection method runs in 40 seconds. Figure 4 shows some examples of foreground
prediction for our method both in temms of diseovered subwindows and selected
bottom-up segments. Please refer to supplemental data for more visualizations.

? super pixels with high foreground scores We deem o superpixel, =2 to be part of the
foreground at the end of the EM rum if =1, = 0.3
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Fig. 4- (a): Examples of foreground prediction in images from the 10-class subset
of Caltech101. Image on the left of each pair shows the super pixels obtained
through bottom-up segmentation. The box in blue and the contour in red are the
ground truth for the object location in the image. The image on the right of each
pair shows the foreground diseovered as a collection of soper pixels (selected if
2 = 0.3) by the segment selection method of localization. The bax in green is the
foreground extent predicted by subwindow discovery method. (b): Sample results
for MERIC-v1 dataset.

T Conclusions

Unsupervised foreground discovery is an important but difficult means of extract-
ing structure from large unlabeled image datasets. In this work, we have developed
a probabilistic method to perform simultaneous image clustering and foreground
localization in unlabeled collections. We have shown that hamessing the natural
synergy between the two tasks leads to improved performance at both the tasks_ In
the process, we have formulated two novel methods for discovering and represent-
ing object foregrounds by associating and efficiently estimating latent variables
corresponding to bounding boxes and image segment sets. Our method can affi-
ciently localize object foregrounds without resorting to expensive sliding window
mechanizms. We note that our assomption that each image contains one of K
objects and the simplicity of our appearance model allow us to cast foreground
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through bottom-up segmentation. The box in blue and the contour in red are the
ground truth for the object location in the image. The image on the right of each
pair shows the foreground diseovered as a collection of soper pixels (selected if
2 = 0.3) by the segment selection method of localization. The bax in green is the
foreground extent predicted by subwindow discovery method. (b): Sample results
for MERIC-v1 dataset.

T Conclusions

Unsupervised foreground discovery is an important but difficult means of extract-
ing structure from large unlabeled image datasets. In this work, we have developed
a probabilistic method to perform simultaneous image clustering and foreground
localization in unlabeled collections. We have shown that hamessing the natural
synergy between the two tasks leads to improved performance at both the tasks_ In
the process, we have formulated two novel methods for discovering and represent-
ing object foregrounds by associating and efficiently estimating latent variables
corresponding to bounding boxes and image segment sets. Our method can affi-
ciently localize object foregrounds without resorting to expensive sliding window
mechanizms. We note that our assomption that each image contains one of K
objects and the simplicity of our appearance model allow us to cast foreground
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clustering and localization elegantly as a single joini optimEzation, something has
never been done until now. Forthermore, we empirically show that the approach
outperforms methods that make more complex assumptions bat that then have
to resort to alternation between distinet objectives (e.g., [17]) or to a two-step
solution (e.g., [24]) to solve the problem. We believe there is high value in sim-
ple modals shown to perform well in practice. In the future we are interested in
extending the work to videos where the task is & natural fit. Our probabilistic for-
mulation also enables straightforward integration of non-visual cues such as text
or tags associated to the images, which may yield more semantically meaningful
clusters. The software implementing our algorithm will be made available upon
publication.
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How Brains Are Built: Principles of Computational Neuroscience
By Richard Granger, Ph.D.

o =

Bermhard Lang Phowmgrapher's Chaice/Getty Frages

Editor’s note: The goal of computational neuroscience 1s to understand the bram and its mechanisms well
enough to arhificially spmulate their fimetions. In some areas, ke heanng, vision, and prosthefics, there
have been great advances mn the field Yet there 15 shll much about the bram that 1s utnknewn and therefore
camnot be artificially replicated: How does the bramn use lanpuage, make complex associations, or
orgamze learned expenences? Once the neural pathways responmble for these and many other fimctons
are fully understood and reconstructed, we will have the abihty to build systems that can mateh—and
mavbe even exceed —the brain's capalihties.
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“If I canmot build it, I do pot understand 1t.” So said Nobel lawreate Bichard Feymman and by his
metric, we understand a bit about physics, less about chemistry, and almost nothing about biclogy.

When we fully understand a phenomenon we can specify 1is entire sequence of events, causes,
and effects so completely that 1t 15 pessible to fully simmlate it, with all ifs internal mechani=ms infact.
Acheving that level of understanding 15 rare. It is commensurate with constructing a full design fora
machine that could serve as a stand-in for the thing being studied. To understand a phenomenon
sufficiently to fully simulate it is to understand it conipita Manally.

“Computation” does not refer to computers per se; rather 1t refers to the underhying principles and
methods that make them work. As Tuwing Award recipient Edsger Dijksira said, computational science “is
no more about computers than asironomy is about telescopes.™ Computational science is the study of the
hidden mles underlying complex phenomena from physics to psychology.

Computational newroscience, then, has the aim of understanding brams sufficiently well to be
able to simmlate their fimctions, thereby subsuming the twin goals of science and engineering: deephy
understandmg the mner workmgs of our brains, and being able to constroct simulacra of them. A< simpls
robots foday substifute for luman physical abilities, m sethings from factories to hospitals, so bram
engineenng will construct stand-ins for our mental abihifies—and possibly even enable us o fix our brains
when they break

Brains and Their Construction

Brains, at one level, consist of 1on chanmels, chemical pumps, speciahzed proteins. At another
level, they contzin several types of neurons connected wia synaphe junehons. These are in hom composed
into networks consisting of repeating modules of carefully arranged cirenits. These networks are arrayed
in interacting brain structures and systems, each with distimet internal wiring and each carrying out
distinct fimetions. As in most complex systems, each level arises from those below it but 15 not readily
raducible to its constiuents. Cur understandmg of an organism depend= on our understanding of its
component organs, but also on the ongoing interactions ameng those parts, as is evident in differenfiaing
a living organizm from a dead one.

For instance, kidneys serve primarily to separate and excrete toxns from blood and to regulate
chemiral balances and blood pressure, =0 a kidney simmlacrom would entail 2 nearly complete ==t of
chermical and enrymatic reachions. 4 bram also momtors many entical regulatory mechanisms, and a
complete understandmg of it will inchode detailed chemmical and biophysical characteristics.

But brains, alone among organs, produce thought, leammg, recogmtion. Mo amount of
enginsering has vet equaled let alone swrpassed, brains’ abilihes af these tasks. Desprte huge efforts and
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large budgets, we have no artificial systems that nival lnmans at recogmmng faces, nor understanding
natwal languages, por learmng from expenence.

There are, then, crucial principles that brains encode that have so far eluded the best efforts of
scientists and engineers to decode. Much of computational peuroscience 15 aimed directly at attempting to

Today we cannot yvet fully iomlate every aspect of a kndney, but we have passed a decisive
function in patients who have suffered kidney loss or damage. Artificial kidneys do not use the same
subsirate as real kidneys; cirewits and mcroflmdics take the place of cells and tissue, vet they carmy out
operations that are equivalent, and hifesaving, to the human bodies that wse them A primary long-term
goal of computational newroscience is to derive scientific prneiples of brain operation that will cataly=e
the comparable development of prosthetic brains and bram parts.

Do We Know Engugh About Brains to Build Them?

As wnth any complex system 1o the absence of full computational understanding of the brain, we
proceed by collecting constramts: expermmentally observable data can rule cut potenhial explanations. The
more we can rule out, the closer we are to hypotheses that can account for the facts. Many constramming
observations have usefully narrowed our understanding of bow mental actvity anses from bram cirewtry;
these can be organized info five key categones.

Brain componeént allometry: Remarkably tight relationships hold between a brain’s overall size and the
size of its constifuent components. Just knowing the overall brain size of any mammal, we can with zreat
precision predict the size of all component structures within the brain. Thus, with few exceptions, brains
apparently do not and cannot choose which structures to differentially expand or reconfigure "' So, quite
swrprisingly, rather than a range of different corewrts, or even selective resizing of bram components,
bhuman brains are instead largely built from the same components as other mammalian brans, in the same
cirewat layouts, with highly predictable relative sizes. Apparently a quantitative change (brain size) results
in 2 qualitative one (nmiquely buman computational capabilities) ™

Telencephalic uniformity: Circwmts throughout the forebram (telencephalon) exhibit notably similar
repeated designs,*"* with few exceptions, ™" including some slightly different cell types, cirouit
structures, and genes. Yet brain areas parported to underhie umque human abilies (e.g., language) barely
differ from other structures; there are no extant bypotheses of how the modest observed penstic or
anatomnical differences could engender excesdingly different fimctions. Taken together, these finding=
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intimate the exystence of 2 few elemental core computational functons that are re-used for a broad enge
of apparently different sensory and copmitive operations.

Anatomical and physiological imprecision: Evidence suzgests that newral components are swprismgly
sloppy (probabilistic) in their operation, very sparsely cormerted, low-precision, and extraordinarily
slowr, ™ despite exhibiting careful timing under some experimental conditions. ®" Either brams are far
more precise than we yet understand, or else they camry out families of algorithms whereby precise
computations arise from imprerise components. ™ If so, this greatly constrains the fypes of operations
that any brain cireuits could be engaged in

Task specification: Though artificial telephone operators field phone inguiries with impressive voice
recogmition, we know that they could do far better. The only reason we know this is that human operators
substantially cutperform them: there are no other formal specifications whatsoever that characterize the
wvoice recognition task *** Engineers began by believing that they understood the task sufficienthy to
construct artificial operators. It has fwned out that their specification of the fask does not match the
actual, stll lighly elusive set of steps that bumans actually perform m recognizing speech. Without
formal task specifications, the only way to equal Imman performance may be to come to understand the
bramn mechanizms that grve rise to the behavior.

Parallel processing: Some recognition tasks take barely a few lundred milliseconds,” " comesponding
to no more than hundreds of serial neural steps {of milliseconds each), strongly indicating myriad neurons
acting in parallel * imposing a very strong constraint on the types of operations that individual nenrons
could be carrying out. Yet parallehsm in computer science, even on a small scale, such as two or three
simultanecns operations, has proven very elusive. Why, for mstance, don’t our dual-core or guad-core
computers rn tero or four fomes faster than single-core systems? The (pamfully direct) answer 15 that we
simply do not vet know how to dnide most software into parts that can effectively exploit the presence of
thess addifional hardware element=. Exven for readily parallelizable software, it is challenging to desizn
hardware that yields scalable returns as processors are added. ™ It is increasingly possible that principles
of brain architecture may help identify novel and powerful parallel machine designs.

From Circuits to Algorithms to Prosthetics
There are several promising instances in which different laboratornes (even laboratories that are
competing with each other) have armmed at substantial pomts of apreement about what certam brain areas
are hkely doing. & notable success story anses from studies of the basal gangha which takes two kinds of
4
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inputs: sensory nforoation from the neocortex, and “reward” and “punishment™ information ansing from
external siimuli. We are close to computationally understanding this large chunk of the bramn, which
apparently carmies out just one of cur primary learnimg abalifies: our slow “rial and errer™ learming
(studied m computational newroscience as “reinforcement leaming™), underlymg our ability to acqure
such skills as riding a bike ™ **4

In addibon, there 15 2 growing consensus that ciromits m the neocortex, by far the largest set of
brain structures in bumans, carry out another, quite different kind of learming: the ability to rapidly learn
new facts and fo crganize newly acquired knowledze mio vast lnerarchical strectures that encode complex
relationships, such as categories and subeategories, episodes, and relations. ™ %™

And these two systems are connected to each other, via far-reaching corico-basal gangha (aka
cortico-siriatal) loops .** The basal ganglia system carries out the computational operations of skill
learming (remnforcement leamning) while cortical cirowts computationally constroct vast erarchies of
facts and relations among facts. Interestingly, computational research on reinforcement learming has found
that adding hierarchies to the process can greatly improve leaming performance ™™ Our ancestors
{reptiles and early mammals) were largely dnven by the basal ganglia, whereas mammalian evolution has
bugely expanded the relatrve size of the neocortex. By consistently increasing the size ratio of the
neocortex to the basal gangha, mammahan brain evolufion may be solving a specific computational
puzzle ™ ™™ Our understanding of human and animal learning abilities is being advanced by these
computational studies, and we are developing novel methods for machme learming, enabling more
powerful computer alzonthms for anaby=is of complex data rapging from medical to commercial to
financial applications.

Meanwhile, as study of these primary corico-sinatal bram structures remaims very much stll m
progress, great advances bave been made 1n deep, computational understanding of certain circomsenbed
brain systems, in particular these mvelved m early sensory transduction and perception. The results have
been striking.

Analy=is of cochlear mechamsmes has led to the construction of prosthetics that serve today as
cures for more than 100,000 people who have lost their hearing ® Retinal prosthetics are in advanced
development *'** In a recent study, patients with retinal implants recognized printed letters of size and
distance comparable to reading a book m relatively low hight. And experimental prosthetic arms can
respond to brain-initiated control; people lear to control the arm simply by deciding to move it **

These sensory and motor findings have also led to formalizations of the general problem of acting
in environments that are only partly observable and are dynameally changing, such as robotics or
automated navigation; the result 15 a set of mcreasingly mmpressive robotic methods that see and nawvigate
in complex surommdings. ® In a series of trials mm by the Department of Defense over the last several
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years, vehiclas were, for the first time, able to navigate through real urban traffic, merging, passing,
parking, and negotiatng intersechions, with no human control. Retinal alponthms operate equally well on
other sensors such as radar; and prosthetic limb algornithms are wholly applicable to robots. Many of the
alponthms that operate robots and automated vehicles are closely related to those that operate prosthetic
Limbs.

As we come to computationally understand how these perpheral sensonmotor systems work, the
distinction between natural and artificial is being eroded. A breed of robots that share many of our own.
dexterity and perceptual abilities is likely to emerze directly from this research  As these increasingly
biclogically-based robots, or biots, come fo replace human skilled labor, the economic and sectal
consequences may be substanhal

From Percept to Concept

The primary differences between human brains and those of cther animals lie not In our sensery
or motor mechamsms, which are largely shared across many species, but rather in cognitive alilities:
association, representation, reasoning. Despite great advances in peripheral prosthetics, there is no
commensurate understandmy of advanced cogmtion

The alilties of penpheral ciremits (retina, cochlea, mmitial thalarme and cortical regrons) are
largely bt m at birth wia genetic programs and shaped in early childhood during developmentally
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observing and inferacting with objects and events m our swroundimgs. Cortical cirewmits are engapged
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The low-level biological mechamsms inderpinning long-term fact learming (permanent, anatomical
synaptic chanpes. rather than inherently ephemeral chemiral changes) are becoming understood ** But the
neoccortex 15 not just a passive warehouse of billions of isolated facts; we can arbitranly associate them
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memorv—adepends on mecham=ms that are as yet stll unknowm.
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clufter), but some laboratones are increasingly focusing on cortical crewts that are beyond the early
sensory areas: the vast remainder of the neccortex that somehow encodes sequences, associations, and
abstract relations ™ **

Sesing a phone, we percerve not only 1ts visual form but also its affordances (calling, texting,
photographimg, playving mu=ic), our memones of 1t (when we got it, where we have recently used 1f), and a
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wealth of potential associations (our ringtone, whom we might call, whether it is charped ete). The
questions of how cross-medal information 15 learmed and miegrated. and m what form the knowledge 15
stored—how percepts become concepts—now constitute the primary frontier of work In computational
nenroscience. In this borderland between perception and copmfion, the penipheral lanpuage of the senses
is fransoted to the mbernal lingua franca of the brain, freed from literal sensation and formulated mio
internal representations that can mehode a wealth of associahons.

Even owr simplest perceptions often rely on top-down processing: using stored memory
representafions to inform cur ongoing perception and recopmiion. In some circumistances, We can
recognize objects in just tens of milliseconds, *** so rapidly that it is unlikely that any top-down pathways
are vet engaged. Yet once we're beyond simple recognition, to the far neher range of inference,
association, and even langnage, memeries strongly influence cur perceptions. Merely thinking of a car is
sufficient fo activate the same early visual areas that would have been tnggered by actually sesing the car,
inchuding its shape, size, color, and other features "™

These sarty visual areas are just one instance of the spread of achivation from a mzgernng
memory. """ Thinking of a car may also activate many other areas, as vet largely mmmapped, that
encode knowledge of how to open car doors, tum 1znution keys, steer, accelerate, brake—or mformation
about what parficular car you own, where it 15 parked, and so on. Today we can experimentally test for
wisual shape information berause we know a great deal about bow to decodes newral responses that ocour
in early visual areas,"™ but we have comparatively modest data for other associative knowledze "™
Computational models of spreading activation' " are now striving to make contact with specific nenral
mechanisms and bram pathwrays, to amive at comvergent hypotheses like those of peripheral sensory
systems.

Gomputing Individual Differences: From Neurotypes to Cognolypes

Though all of uws have extraordinanly similar brains, even small differences can be stk
Whether particular characteristics are genetic, developmental, or learned is stll often mpossible to
ascertain, but individual behavioral differences are bighly likely to directly correspond to individual bram
differences, whether genetic or acquired. Most work in computational neuroscience—from perception to
cogmfion, from anatomy to computatonal models—has forused on one agent at 2 ttme, one bram at a
tme. & forther fromtier will be fo confront differences among individuals.

Chr bodies are built by genetic programs that became locked into particular patterns early oo m
mammahzan evolution: four appendages; eves above nose above mouth between ears; ten fingers and fen
toes. We are not optomized to have just these features and no others; most of the varations that we mzht
1magine—nose above eves; five lmbs; tentacles mstead of hands—have never been tned by evolubon,
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patient. And there are nisks: the surgical mplantation procedure may lead to a higher iInmdence of
meningitis. """ Moreover, there are social complications: some in the deaf commumity find cochlear
implants to be ethically musplaced, arguing that the deaf should not be thought of as disabled at all, but
rather as a “minarity cultural group ™™

What of brain parts that are deeper than just the peripheral hearmng system? Traumatic brain
mjwy can cause debibfating deficits m memory and copmition; at present, such injunes are extremaly
difficult even to diagnose, let alone to treat. Implanis to restore lost cognitive abibiies for such aceident
victims would be revolutionary, and would be welcomed

But if implants existed for accident-induced cognitive losses, could they also be used to augment
unnyured cogmirve function? There 15 suggestive evidence from drmugs: some Alrhermer’s medications
may improve memory In people with mild cogmitive impairment—but the FDIA has not yet approved the
use of amy treatments for these lesser conditions. """ How would regulators at the FDA react if it
became possible to aupment our brains—implants to belp us thank faster or to merease our memory
capacity? The econcmic, social, and pobifical concomitants of such technology would surely echpse those
arising from cochlear implanis.

Each brain contains idiosynerasies; our brains define who we are. The way we interact, the kinds
of decisions we make, the connections we percerve—all anse from the still-obsoure mechanisms of the
wast span of thalamocortical corenits and corbco-sinatal loops in owr beads. These repeating components
give us our mammahan ablites, our uniquely hwman faculbes, and our individuzl charactensties. The
computational understanding of individual and group differences will hikely lead to a new science of
different types of cogmtive behavior, with implications renging from law to educaton. The formerly
fammhar terrain of Inman mature may appear quite different m this hight; perhaps, ammving there, we will
truly know the place for the first tme.

Chur abilifies are not inimitable; brain cirewts are cirewis, albeit nonstandard ones, and they will
wield to anabyas. As computational peuroscience comes to demystfy them we verge on an era of new
frontiers in science and medicine, in which we can increasingly repair, enhance, and hkely supplant the
biclomcal engmines we thimk with.
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List of Acronyms, Abbreviations, and Symbols

Acronym Description
BORN branching object relation notation
bovw bag of visual words
EM expected maximization
CSL cortico-striatal loop
JLC joint localization and clustering
Knn k nearest neighbor
SVM support vector machine
VTV vision for time-varying images
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